Skip to main content

How to Mediate Cardioprotection in Ischemic hearts—Role of Adenosine

  • Chapter
Book cover Myocardial Ischemia and Preconditioning

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 6))

Summary

Both prevention and attenuation of ischemic heart diseases are the important issues for cardiologists. To save these patients from the deleterious sequels, there are three different strategies. The first strategy is to remove the causes of ischemic heart diseases; the second is to attenuate the ischemia and reperfusion injury; the third is to prevent the progression of cardiac remodeling and chronic heart failure following ischemia and reperfusion injury. Adenosine, which is known to be cardioprotective against ischemia and reperfusion injury, may merit these three strategies for cardioprotection. First of all, adenosine develops collateral circulation via induction of growth factors, and triggers the cardioprotection of ischemic preconditioning, both of which affords ischemic tolerance in advance. Secondly, exogenous adenosine is known to attenuate the severity of ischemia and reperfusion injury. Third, adenosine is also known to attenuate the release of norepinephrine, production of endothelin and the activation of renin-angiotensin systems that is believed to cause cardiac hypertrophy and remodeling, and thus, chronic heart failure. We also revealed that adenosine metabolism is changed in patients with chronic heart failure, and increases in adenosine levels may attenuate the severity of chronic heart failure. Taken together, we here propose potential mechanisms for cardioprotection attributable to adenosine in ischemic heart diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hori M, Kitakaze M. 1991. Adenosine, the heart and coronary circulation (Brief Review). Hypertension 18:565–574.

    Article  PubMed  CAS  Google Scholar 

  2. Kitakaze M, Hori M, Kamada T. 1993. The role of adenosine and its interaction with alpha-adrenoceptor activity in myocardial ischemic and reperfusion injury (Brief Review). Cardiovasc Res 27:18–27.

    Article  PubMed  CAS  Google Scholar 

  3. Mubagwa K, Mullane K, Flameng. 1996. Role of adenosine in the heart and circulation. Cardiovasc Res 32:797–813.

    PubMed  CAS  Google Scholar 

  4. Kitakaze M, Minamino T, Node K, Takashima S, Funaya H, Kuzuya T, Hori M. 1999. Adenosine and Cardioprotection in the Diseased Heart (Brief Review). Jpn Circ J 63:231–243.

    Article  PubMed  CAS  Google Scholar 

  5. Kitakaze M, Hori M. 1998. It is time to ask what adenosine can do for cardioprotection (Brief Review). Heart and Vessels 13:211–228.

    Article  PubMed  CAS  Google Scholar 

  6. Kitakaze M. 1999. It is the time to ask what adenosine can do for cardioprotection in ischemic heart disease. Internal Medicine 38:305–306.

    Article  PubMed  CAS  Google Scholar 

  7. Allen DG, Orchard CH. 1987. Myocardial contractile function during ischemia and hypoxia Circ Res 60:153–168.

    CAS  Google Scholar 

  8. Mauser M, Hoffineister HM, Nienber C, Schaper W. 1985. Influence of ribose, adenosine, and “AICAR” on the rate of myocardial adenosine triphosphate synthesis during reperfusion after coronary artery occlusion in the dog. Circ Res 56:220–230.

    Article  PubMed  CAS  Google Scholar 

  9. Pike MM, Luo CS, Clark D, Kirk KA, Kitakaze M, Madden MC, Crago E. Jr., Pohost GM. 1993. NMR measurements of Na+ and cellular energy in the ischemic rat heart: Role of Na+/H+ exchange. Am J Physiol 265:H2017–H2026.

    PubMed  CAS  Google Scholar 

  10. Marban E, Kitakaze M, Kusuoka H, Porterfield JP, Yue DT, Chacko VP. 1987. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts containing the Ca2+-indicator 5:5′-F2-BAPTA. Proceeding National Academy Science (U.S.A) 84:6005–6009.

    Article  CAS  Google Scholar 

  11. Sato H, Hori M, Kitakaze M, Iwai K, Takashima S, Kurihara H, Inoue M, Kamada T 1993. Reperfusion after brief ischemia disrupts the microtuble structure in the canine hearts Circ Res 72:361–375.

    CAS  Google Scholar 

  12. Kitakaze M, Weisman HF, Marban E. 1988. Contractile dysfunction and ATP depletion following transient calcium overload in perfused ferret hearts. Circulation 77:685–695.

    Article  PubMed  CAS  Google Scholar 

  13. Kitakaze M, Weisfeldt ML, Marban E. 1988. Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82:920–927.

    Article  PubMed  CAS  Google Scholar 

  14. Kitakaze M, Takashima S, Minamino T, Node K, Kamamura K, Shinozaki Y, Mori H, Inoue M, Hori M, Kamada T. 1997. Transient acidosis during early reperfusion following myocardial ischemia limits infarct size in the dogs. Am J Physiol 272:H2071–H2078.

    PubMed  CAS  Google Scholar 

  15. Taga R, Okabe E. 1991. Hydroxyl radical participation in the in vitro effects of gram-negative endotoxin on cardiac sarcolemmal Na,K-ATPase activity. Jpn J Pharmacol 55:339–349.

    Article  PubMed  CAS  Google Scholar 

  16. Kitakaze M, Hori M, Takashima S, Iwai K, Sato H, Inoue M, Kitabatake A, Kamada T. 1992. Superoxide dismutase enhances ischemia-induced reactive hyperemic flow and adenosine release in dogs: A role of 5′-nucleotidase activity. Circ Res 71:558–566.

    Article  PubMed  CAS  Google Scholar 

  17. Gross GJ, Farber NE, Hardman HF, Warltier DC. 1986. Beneficial actions of superoxide dismutase and catalase in stunned myocardium of dogs. Am J Physiol 250:H372–H377.

    PubMed  CAS  Google Scholar 

  18. Sekili S, McCay PB, Li XY, Zughaib M, Sun JZ, Tang L, Thornby JI, Bolli R. 1993. Direct evidence that the hydroxyl radical plays a pathogenetic role in myocardial “stunning” in the conscious dog and demonstration that stunning can be markedly attenuated without subsequent adverse effects. Circ Res 73:705–723

    Article  PubMed  CAS  Google Scholar 

  19. Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR, George BS, Kereiakes DJ, Deitchman D, Gustafson N, Brinker JA, Becker LC, Mancini J, Topol E, Werns SW. 1994. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation 89:1982–1991.

    Article  PubMed  CAS  Google Scholar 

  20. Schömig A, Dart AM, Dietz R, Mayer E, Kübier W. 1984. Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: Locally mediated release. Circ Res 55:689–701.

    Article  PubMed  Google Scholar 

  21. Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T. 1987. α1-Adrenoceptor activity regulates release of adenosine from the ischemic myocardium in dogs. Circ Res 60:631–639.

    Article  PubMed  Google Scholar 

  22. Kitakaze M, Hori M, Gotoh K, Sato H, Iwakura K, Kitabatake A, Inoue M, Kamada X 1989. Beneficial effects of α2-activity on ischemic myocardium during coronary hypoperfusion in dogs. Circ Res 65:1632–1645.

    Article  PubMed  CAS  Google Scholar 

  23. Huang AH, Feigl EO. 1988. Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 62:286–298.

    Article  PubMed  CAS  Google Scholar 

  24. Kloner RA, Ganote CE, Jennings RB. 1974. The “no-reflow” phenomenon after temporary coronary occlusion in the dog. J Clin Invest 54:1496–1508.

    Article  PubMed  CAS  Google Scholar 

  25. Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T. 1996. Clinical implications of the ‘no reflow’ phenomenon. A predictor of complications and left ventricular remodeling in reperfused anterior wall myocardial infarction. Circulation 223–228.

    Google Scholar 

  26. Hansen PR. 1995. Role of neutrophils in myocardial ischemia and reperfusion. Circulation 91:1872–1885.

    Article  PubMed  CAS  Google Scholar 

  27. Watanabe T, Suzuki N, Shimamoto N, Fujino M, Imada A. 1991. Contribution of endogenous endothelin to the extension of myocardial infarct size in rats. Circ Res 69:370–377.

    Article  PubMed  CAS  Google Scholar 

  28. Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. 1994. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:621–1628.

    Article  Google Scholar 

  29. Hollister AS, Inagami T. 1991. Atrial natriuretic factor and hypertension. A review and metaanalysis. Am J Hypertens 4:850–865.

    PubMed  CAS  Google Scholar 

  30. Node K, Kitakaze M, Kosaka H, Minamino T, Funaya H, Inoue M, Hori M, Kamada T. 1997. Bradykinin mediation of Ca2+-activated K+ channels regulaties coronary blood flow in ischemic myocardium. Circulation 95:1560–1567.

    Article  PubMed  CAS  Google Scholar 

  31. Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. 2000. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106(12):1521–1530.

    Article  PubMed  CAS  Google Scholar 

  32. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK. 1999. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285(5431):1276–1279.

    Article  PubMed  CAS  Google Scholar 

  33. Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R. 1987. Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145.

    Article  PubMed  CAS  Google Scholar 

  34. (JACC•) Mashaffey K, Puma JA, Barbagelata A, Casas CA, Lambe L, Orlandi C, Gibbons RJ, Califf RM, Granger CB. 1997. Does adenosine in conjugation with thrombosis reduce infarct size? Results from the controlled, randomized AMISTAD Trial. Circulation 6:I-206–I-207.

    Google Scholar 

  35. Nakayama H, Nanto S, Ohara T, Morozumi T, Nagata S, Hoki N, Kitakaze M, Minamino T, Hori M. 1999. Intracoronary administration of ATP combined with direct PTCA reduces the size of myocardial infarction?: Cooperative Osaka Adenosine Trial for Acute Myocardial Infarction, (abstract) J AM Coll Cardiol 33:376A.

    Article  Google Scholar 

  36. Ohisalo JJ. 1987. Regulatory functions of adenosine. Medical Biology 65:181–191.

    PubMed  CAS  Google Scholar 

  37. Achterberg PW, de Tombep P, Harmsen E, de Jong JW. 1985. Myocardial S-adenosylhomocysteine hydrolase is important for adenosine production during normoxia. Biochem Biophys Acta 840:393–400.

    Article  PubMed  CAS  Google Scholar 

  38. Rubio R, Wiedmeier VT, Berne RM. 1974. Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6:561–566.

    Article  PubMed  CAS  Google Scholar 

  39. Wei HM, KangYH, Merill GF. 1988. Coronary vasodilation during global myocardial hypoxia: Effect of adenosine deaminase. Am J Physiol 254:H1004–H1009.

    CAS  Google Scholar 

  40. Wadsworth RM. 1989. The effects of aminophylline on the increased myocardial blood flow produced by systemic hypoxia or by coronary artery occlusion. Eur Pharmacol 1972;20:130–132.

    Article  CAS  Google Scholar 

  41. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Okazaki Y, Node K, Komamura K, Iwakura K, Inoue M, Kamada T 1995. α1-Adrenoceptor activation increases ectosolic 5′-nucleoti-dase activity and adenosine release in rat cardiomyocytes by activating protein kinase C. Circulation 91:2226–2234.

    Article  PubMed  Google Scholar 

  42. Kitakaze M, Minamino T, Node K, Komamura K, Inoue M, Hori M, Kamada T 1996. Activation of ecto-5′-nucleotidase by protein kinase C attenuates irreversible cellular injury due to hypoxia and reoxygenation in rat cardiomyocytes. J Mol Cell Cardiol 28:1945–1955.

    Article  PubMed  CAS  Google Scholar 

  43. Hermann SC, Feigl EO. 1992. Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. Circ Res 70:1203–1216.

    Article  Google Scholar 

  44. Londos C, Wolff J. 1977. Two distinct adenosine-sensitive sites on adenylate cyclase. Proc Natl Acad Sei USA 74; 5482–5486.

    Article  CAS  Google Scholar 

  45. Londos C, Cooper DMF, Schlegel W, Rodbell M. 1978. Adenosine analogs inhibit adipocyte adenylate cyclase by a GTP-dependent process: Basis for actions of adenosine and methylxanthines on cyclic AMP production and lipolysis. Proc Natl Acad Sei USA 75:5362-5366.

    Article  CAS  Google Scholar 

  46. Olsson RA, Pearson JD. 1990. Cardiovascular purinoceptors. Physiol Rev 70:761–845.

    PubMed  CAS  Google Scholar 

  47. Sato H, Hori M, Kitakaze M, Takashima S, Inoue M, Kitabatake A, Kamada T 1992. Endogenous adenosine attenuates beta-adrenoceptor-mediated inotropic response in the hypoperfused canine myocardium. Circulation 85:1594–1603.

    Article  PubMed  CAS  Google Scholar 

  48. Isenberg G, Belardinelli L. 1984. Ionic basis for the antagonism between adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 55:309–325.

    Article  PubMed  CAS  Google Scholar 

  49. Taddei S, Arzilli F, Arrighi P, Salvetti A. 1992. Dipyridamole decreases circulating renin-angiotensin system activity in hypertensive patients. Am J Hypertens 5:29–31.

    PubMed  CAS  Google Scholar 

  50. Richardt G, Wassa W, Kranzhofer R, Mayer E, Schöming A. 1987. Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: A protective mechanism in early myocardial ischemia. Circ Res 61:117–123.

    Article  PubMed  CAS  Google Scholar 

  51. Cronstein BN. 1991. Adenosine is an autacoid of inflammation: Effects of adenosine on neutrophil function. In Imai S, Nakazawa M (eds) Role of Adenosine and Adenine Nucleotides in the Biological System. Elsevier Science Publisher, Amsterdam, pp. 515–520.

    Google Scholar 

  52. Steenbergen C, Perlman ME, London RE, Murphy E. 1993. Mechanism of preconditioning. Ionic alterations. Circ Res 72:112–125.

    Article  PubMed  CAS  Google Scholar 

  53. Parmely MJ, Zhou WW, Edward CK III, Borcherding DR, Silverstein R, Morrison DC. 1993. Adenosine and a related carbocyclic nucleoside analogue selectively inhibit tumor necrotic factor — a production and protect mice against endotoxin challenge. J Immunol 151:389–396.

    PubMed  CAS  Google Scholar 

  54. Wagner DR, McTiernan C, Sanders VJ, Feldman AM. 1998. Adenosine inhibits lipopolysaccharide-induced secretion of tumor necrosis factor-alpha in the failing human heart. Circulation 97:521–524.

    Article  PubMed  CAS  Google Scholar 

  55. Kitakaze M, Hori M, Sato H, Takashima S, Inoue M, Kitabatake A, Kamada T 1991. Endogenous adenosine inhibits platelet aggregation during myocardial ischemia in dogs. Circ Res 69:1402–1408.

    Article  PubMed  CAS  Google Scholar 

  56. Minamino T, Kitakaze M, Asanuma H, Tomiyama Y, Shiraga M, Sato H, Ueda Y, Funaya H, Kuzuya T, Matsuzawa Y, Hori M. 1998. Endogenous adenosine inhibits P-selectin-dependent formation of coronary thrombi during hypoperfusion in dogs. J Clin Invest 101:1643–1653.

    Article  PubMed  CAS  Google Scholar 

  57. minamino ICAM to adenosine.

    Google Scholar 

  58. Kurtz A. 1987. Adenosine stimulates guanylate cyclase activity in vascular smooth muscle cells. J Biol Chem 262:6296–6300.

    PubMed  CAS  Google Scholar 

  59. Van Schaick EA, Jacobson KA, Kim HO, IJzerman AP, Danhof M. 1996. Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. Eur J Pharmacol 308:311–314.

    Article  PubMed  Google Scholar 

  60. Harder DR, Belardinelli L, Sperelakis N, Rubio R, Berne RM. 1979. Differential effects of adenosine and nitroglycerin on the action potential of large and small coronary arteries. Circ Res 44:176–182.

    Article  PubMed  CAS  Google Scholar 

  61. Fenton RA, Rubio BR, Berne AM. 1982. Effect of adenosine on calcium uptake by intact and cultured vascular smooth muscle. Am J Physiol 242:H797–H804.

    PubMed  CAS  Google Scholar 

  62. Aversano T, Ouyang P, Silverman H. 1991. Blockade of the ATP-sensitive potassium channel modulate reactive hyperemia in the canine circulation. Circ Res 69:618–622.

    Article  PubMed  CAS  Google Scholar 

  63. Minamino, Kitakaze M, Matsumura Y, Nishida N, Kato Y, Hashimura K, Matsu-ura Y, Funaya H, Sato H, Kuzuya T, Hori M. 1998. Impacts of coronary risk factors on contributions of metabolic coronary vasodilation in humans. J Am Coll Cardiol 31:1274–1279.

    Article  PubMed  CAS  Google Scholar 

  64. Kitakaze M, Hori M, Morioka T, Takashima S, Sato H, Minamino T, Inoue M, Kamada T 1993. Attenuation of 5′-nucleotides and adenosine release in activated human polymorphonuclear leukocytes. Circ. Res 73:524–533.

    Article  PubMed  CAS  Google Scholar 

  65. Schaper W. 1991. Angiogenesis in the adult heart. Basic Res Cardiol 86:Suppl 2:51–6.

    PubMed  Google Scholar 

  66. Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M, Ashare AB, Lathi K, Isner JM. 1998. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98: 2800–2804.

    Article  PubMed  CAS  Google Scholar 

  67. Yanagisawa MA, Uchida Y, Nakamura F, Tomaru T, Kido H, kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, Ito H. 1992. Salvage of infarcted myocardium by angiogenic action of basic fibrob-last growth factor. Science 257:1401–1403.

    Article  Google Scholar 

  68. Fischer S, Knoll R, Renz D, Karliczek GF, Schaper W. 1997. Role of adenosine in the hypoxic induction of vascular endothelial growth factor in porcine brain derived microvascular endothelial cells. Endothelium 1997;5(4):373.

    Google Scholar 

  69. Dusseuau JW, Hutchins M, Malbasa DS. 1986. Stimulation of angiogenesis by adenosine on the chick choriaoallantonic membrane. Circ Res 59:163–170.

    Article  Google Scholar 

  70. Murry CE, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: A delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  71. Liu GS, Thornton J, Van Winkle DM, Stanley AWH Olsson KA, Downey JM. 1991. Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 84:350–356.

    Article  PubMed  CAS  Google Scholar 

  72. Kitakaze M, Hori M, Morioka T, Minamino T, Takashima S, Okazaki Y, Node K, Komamura K, Iwakura K, Inoue M, Kamada T. 1995. α1-Adrenoceptor activation increases ectosolic 5′-nucleotidase activity and adenosine release in rat cardiomyocytes by activing protein kinase C. Circulation 91:2226–2234.

    Article  PubMed  Google Scholar 

  73. Kitakaze M, Node K, Minamino T, Komamura K, Funaya H, Shinozaki Y, Chujo M, Mori H, Inoue M, Hori M, Kamada T. 1996. The role of activation of protein kinase C in the infarct size-Hmiting effect of ischemic preconditioning through activation of ecto-5′-nucleotidase. Circulation 93: 781–791.

    Article  PubMed  CAS  Google Scholar 

  74. Sato T, O’Rourke B, Marban E. 1998. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C Circ Res 83:110–114.

    Article  PubMed  CAS  Google Scholar 

  75. Marbar MS, Latchman DS, Walker JM, Yellon DM. 1993. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress associated with resistance to myocardial infarction. Circulation 83:13–25.

    Google Scholar 

  76. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M. 1993. Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299.

    Article  PubMed  CAS  Google Scholar 

  77. Kitakaze M, Hori M, Sato H, Iwakura K, Gotoh K, Inoue M, Kitabatake A, Kamada T. 1991. Beneficial effects of al-adrenoceptor activity on myocardial stunning in dogs. Circ Res 68: 1322–1339.

    Article  PubMed  CAS  Google Scholar 

  78. Kitakaze M, Weisman HF, Marban E. 1988. Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695.

    Article  PubMed  CAS  Google Scholar 

  79. Marban E, Kitakaze M, Koretsune Y, Yue DT, Chacko VP, Pike MM. 1990. Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied for the study of ischemia and reperfusion. Circ Res 66:1255–1267.

    Article  PubMed  CAS  Google Scholar 

  80. Green A, Newsholme EA. 1979. Sensitivity of glucose uptake and lipolysis of white adipoytes of the rat to insulin and effects of some metabolites. Biochem J 180:365–370.

    PubMed  CAS  Google Scholar 

  81. Raberger G, Kraupp O, Stuhlinger W Nell G, Chirikdjiam JJ. 1970. The effects of an intracoronary infusion of adenosine on cardiac performance, blood supply and myocardial metabolism in dogs. Pflügers Arch 317:20–34.

    Article  PubMed  CAS  Google Scholar 

  82. Mainwaring RD, Mentzer RM Jr. 1986. Effects of dipyridamole on myocardial glucose uptake in the newborn lamb. J Surg Res 40:528–533.

    Article  PubMed  CAS  Google Scholar 

  83. Iguchi N, Nagashima H, Kawana M. 1996. Adenosine inhibits transcription of endothelin-1 gene in endothelial cells. (abstract) Circulation 94:2

    Google Scholar 

  84. Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L. 1999. Natriuretic and diuretic actions of a highly selective adenosine Al receptor antagonist. J Am Soc Nephrol 10:714–720.

    PubMed  CAS  Google Scholar 

  85. Asakura M, Kitakaze M, Takashima S, Liao Y, Ishikura F, Yoshinaka T, Ohmoto H, Node K, Yoshino K, Ishiguro H, Asanuma H, Sanada S, Matsumura Y, Takeda H, Beppu S, Tada M, Hori M, Higashiyama S. 2002. Cardiac Hypertrophy is Inhibited by Antagonism of ADAM12 Processing of HB-EGF: Metalloproteinase inhibitors as a potential new therapy for cardiac hypertrophy. Nature Medicine 8:35–40.

    Article  PubMed  CAS  Google Scholar 

  86. Funaya H, Kitakaze M, Node K, Minamino T, Komamura K, Hori M. 1997. Plasma adenosine levels increase in patients with chronic heart failure. Circulation 95:1363–1365.

    Article  PubMed  CAS  Google Scholar 

  87. Kitakaze M, Funaya H, Minamino T, Node K, Koretsune Y, Komamura K, Sato H, Hori M. 1998. A New Strategy for the Treatment of Chronic Heart Failure: Elevation of Plasma Adenosine Levels. Cardiovascular Drug Therapy 12:307–309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Kitakaze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kitakaze, M. (2003). How to Mediate Cardioprotection in Ischemic hearts—Role of Adenosine. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics