Skip to main content

Hypoxic Reperfusion after Brief Ischemia Potentiates Ischemic Preconditioning in Isolated Rat Hearts

  • Chapter
Myocardial Ischemia and Preconditioning

Summary

Ischemic preconditioning renders the myocardium resistant to a subsequent sustained ischemic insult. The aim of this study was to investigate whether the reoxygenation that occurs during the intervening reperfusion of ischemic preconditioning is required for the development of cardioprotection. Isolated perfused rat hearts were either non-preconditioned (CONT) or preconditioned by 5 min ischemia and 5 min normoxic (IPCN) or hypoxic (IPCH) reperfusion before being subjected to 30 min total global normothermic ischemia followed by 30 min normoxic reperfusion. IPCN did not significantly alter the pre-ischemic status of tissue metabolites. However, after IPCH, ATP and glycogen levels were depressed and lactate content increased. As expected, IPCN protected the myocardium in terms of post-ischemic functional recovery (LVDP: IPCN = 53 ± 3% vs CONT = 31 ± 4%; p < 0.01). IPCH also improved contractile recovery (LVDP: 71 ± 5%, p < 0.01 vs CONT) and its cardioprotective effect was higher than that of IPCN (p < 0.05). At the end of reperfusion, tissue metabolite levels were not significantly different between IPCN and CONT groups while in IPCH group ATP level was significantly higher and AMP level was lower (p < 0.05 vs CONT). Our results show that i) during the intervening reperfusion of ischemic preconditioning, reoxygenation is not mandatory to achieve cardioprotection, and ii) a transient hypoxic reperfusion further enhances the beneficial effects of preconditioning against post-ischemic contractile dysfunction. We suggest that this latter phenomenon might be, at least in part, the consequence of glycogen depletion induced by the transient hypoxic reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry C, Jennings R, Reimer K. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  2. Liu G, Thornton J, Van Winkle D, Stanley A, Olsson R, Downey JM. 1991. Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circulation 84:350–356.

    Article  PubMed  CAS  Google Scholar 

  3. Schott R, Rohmann S, Braun E, Schaper W. 1989. Ischemic preconditioning reduces infarct size in swine myocardium. Circ Res 66:1133–1142.

    Article  Google Scholar 

  4. Yellon D, Alkhulaifi A, Browne E, Pugsley W 1992. Ischaemic preconditioning limits infarct size in the rat heart. Cardiovasc Res 26:983–987.

    Article  PubMed  CAS  Google Scholar 

  5. Jennings R, Pugsley W, Yellon D. 1995. Ischemic preconditioning in model of global ischemia: infarct size limitation but no reduction of stunning. J Mol Cell Cardiol 27:1623–1632.

    Article  Google Scholar 

  6. Mei D, Nithipatikom K, Lasley R, Gross G. 1998. Myocardial preconditioning produced by ischemia, hypoxia and a KATP channel opener: effects on interstitial adenosine in dogs. J Mol Cell Cardiol 30:1225–1236.

    Article  PubMed  CAS  Google Scholar 

  7. Simkhovich B, Przyklenk K, Kloner R. 1998. Role of protein kinase C as a cellular mediator of ischemic preconditioning: a critical review. Cardiovasc Res 40:9–22.

    Article  PubMed  CAS  Google Scholar 

  8. Wolfe C, Sievers R, Visseren F, Donnelly T 1993. Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioning segment. Circulation 87:881–892.

    Article  PubMed  CAS  Google Scholar 

  9. Ambrosio G, Tritto I, Chiariello M. 1995. The role of oxygen free radicals in preconditioning. J Mol Cell Cardiol 27:1035–1039.

    Article  PubMed  CAS  Google Scholar 

  10. Murry C, Richard V, Jennings R, Reimer K. 1988. Preconditioning with ischemia: is the protective effect mediated by free radical-induced myocardial stunning? Circulation 78(II):77 (Abstract).

    Google Scholar 

  11. Bolli R. 1991. Oxygen-derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc Drugs Ther 5(2):249–268.

    Article  PubMed  Google Scholar 

  12. Osada M, Takeda S, Sato T, Komori S, Tamura K. 1994. The protective effect of preconditioning on reperfusion-induced arrhythmia is lost by treatment with superoxide dismutase. Jpn Circ J 58:259–263.

    Article  PubMed  CAS  Google Scholar 

  13. Gutmann I, Wahlefeld AW 1974. L-(+)-lactate determination with lactate dehydrogenase and NAD. In: Methods of enzymatic analysis. Ed. HU Bergmeyer, 1464–1475. New York: Academic Press.

    Google Scholar 

  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin reagents. J Biol Chem 193:265–275.

    PubMed  CAS  Google Scholar 

  15. Reimer K, Murry C, Yamasawa I, Hill M, Jennings R. 1986. Four brief periods of ischaemia cause no cumulative ATP loss or necrosis. Am J Physiol 251.H1306–H1315.

    PubMed  CAS  Google Scholar 

  16. Dekker L. 1998. Toward the heart of ischemic preconditioning. Cardiovasc Res 37:14–20.

    Article  PubMed  CAS  Google Scholar 

  17. Ferdinandy P, Szilvassy Z, Baxter G. 1998. Adaptation to myocardial stress in disease states: is preconditioning a healthy heart phenomenon? TIPS 19:223–229.

    PubMed  CAS  Google Scholar 

  18. Murry C, Richard V, Jennings R, Reimer K. 1991. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol 260:H796–H804.

    PubMed  CAS  Google Scholar 

  19. Yellon D, Baxter G. 1995. A “second window of protection” or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol 27:1023–1034.

    Article  PubMed  CAS  Google Scholar 

  20. Ovize M, Przyklenk K, Kloner R. 1992. Partial coronary stenosis is sufficient and complete reperfusion is mandatory for preconditioning the canine heart. Circ Res 71:1165–1173.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffmeister H, Ströbele M, Bäler A, Kazmaier, Seipel L. 1998. Preconditioning preserves energy metabolism in prolonged low-flow ischemia. Basic Res Cardiol 93:487–493.

    Article  PubMed  Google Scholar 

  22. Schultz R, Post H, Sakka S, Wallbridge D, Heusch G. 1995. Intraischemic preconditioning. Increased tolerance to sustained low-flow ischemia by a brief no-flow ischemia without intermittent reperfusion. Circ Res 76:942–950.

    Article  Google Scholar 

  23. Tanaka M, Fujiwara H, Yamasaki K, Sasayama S. 1994. Superoxide dismutase and N-2-mercaptopropionyl glycine attenuate infarct size Hmitation effect of ischaemic preconditioning in the rabbit. Cardiovasc Res 28:980–986.

    Article  PubMed  CAS  Google Scholar 

  24. Tritto I, D’Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A, Esposito A, Chiariello M, Ambrosio G. 1997. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 80:743–748.

    Article  PubMed  CAS  Google Scholar 

  25. Baines C, Goto M, Downey J. 1997. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29:207–216.

    Article  PubMed  CAS  Google Scholar 

  26. Iwamoto T, Miura T, Adashi T, Noto T, Ogawa T, Tsuchida A, Iimura O. 1991. Myocardial infarct size-limiting effect of ischemic preconditioning was not attenuated by free-radical scavengers in the rabbit. Circulation 83:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  27. Richard V, Tron C, Thuillez C. 1993. Ischaemic preconditioning is not mediated by oxygen derived free radicals in rats. Cardiovasc Res 27:2016–2021.

    Article  PubMed  CAS  Google Scholar 

  28. Vanden Hoek T, Becker L, Shao Z, Li C, Schumacker P. 1998. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem 273:1892–1898.

    Article  Google Scholar 

  29. Arad M, de Jong J, de Jonge R, Huizer T, Rabinowitz B. 1996. Preconditioning in globally ischemic isolated rat hearts: effect on function and metabolic indices of myocardial damage. J Mol Cell Cardiol 28:2479–2490.

    Article  PubMed  CAS  Google Scholar 

  30. de Albuquerque C, Gerstenblith G, Weiss R. 1994. Importance of metabolic inhibition and cellular pH in mediating preconditioning contractile and metabolic effects in rat hearts. Circ Res 74:139–150.

    Article  PubMed  Google Scholar 

  31. Doenst T, Guthrie P, Taegmeyer H. 1998. Ischemic preconditioning in rat heart: no correlation between glycogen content and return of function. Mol Cel Biochem 180:153–161.

    Article  CAS  Google Scholar 

  32. Neely J, Grotyohann L. 1984. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55:816–824.

    Article  PubMed  CAS  Google Scholar 

  33. Dobson J, Mayer S. 1975. Mechanisms of activation of cardiac glycogen Phosphorylase in ischemia and anoxia. Circ Res 33:412–420.

    Article  Google Scholar 

  34. King L, Opie L. 1996. Does preconditioning act by glycogen depletion in the isolated rat heart? J Mol Cell Cardiol 28:2305–2321.

    Article  PubMed  CAS  Google Scholar 

  35. Gorman M, He M-X, Sparks H. 1994. Adenosine formation during hypoxia in isolated hearts: effect of adrenergic blockade. J Mol Cell Cardiol 26:1613–1623.

    Article  PubMed  CAS  Google Scholar 

  36. Li Y, Kloner R. 1993. The cardioprotective effects of ischemic “preconditioning” are not mediated by adenosine receptors in rat hearts. Circulation 87:1642–1648.

    Article  PubMed  CAS  Google Scholar 

  37. Bunger R, Soboll S. 1986. Cytosolic adenylates and adenosine release in perfused working heart. Eur J Biochem 159:203–213.

    Article  PubMed  CAS  Google Scholar 

  38. Darvish A, Metting P. 1993. Purification and regulation of an AMP-specific cytosolic 5′-nucleotidase from dog heart. Am J Physiol 264:H1529–H1534.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël de Leiris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Toufektsian, MC., Tanguy, S., Morel, S., Benajiba, N., Boucher, F., de Leiris, J. (2003). Hypoxic Reperfusion after Brief Ischemia Potentiates Ischemic Preconditioning in Isolated Rat Hearts. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics