Skip to main content

Role of Mitochondrial Membrane Potential in Cardiac Protection against Ischemia

  • Chapter
  • 102 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 6))

Summary

Our previous study has indicated that diazoxide protected myocardium against ischemia-reperfusion injury. This study tests the hypothesis that the maintenance of mitochondrial membrane potential (ΔΨm) in myocytes is responsible for cell protection against ischemia. This was specifically tested in myocytes after activation of the mitoKATP channel. Myocyte damage by 3 hrs anoxia and 2 hrs reoxygenation (A-R) was evaluated by cell viability, membrane permeability and apoptosis. Mitochondrial function was indicated by the concentration of ATP. Mitochondrial morphology was observed by staining myocytes with Mito Tracker Orange CMTMRos and by electron microscopy. Immunostaining was used to determine the distribution of cytochrome c. ΔΨm was assayed by staining with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolcarbocyanine iodide (JC-1) and observed by con-focal microscopy. Results show that 1) An extensive damage was observed in cultured myocytes as evidenced by decreased cell viability, compromised membrane permeability, increased apoptosis and decreased ATP concentration after A-R. 2) Mitochondria in A-R myocytes were swollen and exhibited a collapsed ΔΨm. Cytochrome c was released from mitochondria into the cytosol. 3) Diazoxide (100μmol/L) significantly prevented myocyte and mitochondrial damage, cytochrome c loss, and stabilized ΔΨm. 4) This protection was blocked by 5-hydroxydecanoate (5-HD, 500μmol/L), a mitoKATP channel selective inhibitor but not by HMR-1098 (30μmol/L), a putative sarcolemmal KATP channel selective inhibitor. 5) Diazoxide reduced ΔΨm in normal cultured myocytes in a concentration- and time-independent pattern. It is concluded that activation of mitoKATP channel with diazoxide prevented disruption of ΔΨm resulting in protection against A-R induced injury.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Graver GJ. 1997. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res 81:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  2. Gross GJ, Fryer RM. 1999. Sarcolemmal versus mitochondrial ATP-sensitive K+ channels and myocardial preconditioning. Circ Res 84:973–979.

    Article  PubMed  CAS  Google Scholar 

  3. Liu Y, Sato T, O’Rourke B, Marbán E. 1998. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469.

    Article  PubMed  CAS  Google Scholar 

  4. McPherson BC, Yao Z. 2001. Morphine Mimics Preconditioning via Free Radical Signals and Mitochondrial KATP Channels in Myocytes. Circulation 103:290–295.

    Article  PubMed  CAS  Google Scholar 

  5. Mizumura T, Nithipatikom K, Gross GJ. 1995. Bimakalim, an ATP-sensitive potassium channel opener, mimics the effects of ischemic preconditioning to reduce infarct size, adenosine release, and neutrophil function in dogs. Circulation 92:1236–1245.

    Article  PubMed  CAS  Google Scholar 

  6. Wang YG, Hirai K, Ashraf M. 1999. Activation of mitochondrial ATP sensitive K+ channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ Res 85: 731–741.

    Article  PubMed  CAS  Google Scholar 

  7. Xu M, Wang Y, Ayub A, Ashraf M. 2001. Mitochondrial KATP channel activation reduces anoxic injury by restoring mitochondrial membrane potential. Am J Physiol 281:H1295–1303.

    CAS  Google Scholar 

  8. Akao M, Ohler A, O’Rourke B, Marbán E. 2001. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res 88:1267–1275.

    Article  PubMed  CAS  Google Scholar 

  9. Iwai T, Tanonaka K, Koshimizu M, Takeo S. 2000. Preservation of mitochondrial function by diazoxide during sustained ischemia in the rat heart. Br J Pharmacol 129:1219–1227.

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Takashi E, Xu M, Ayub A, Ashraf M. 2001. Downregulation of protein kinase C inhibits activation of mitochondrial KATP channels by diazoxide. Circulation 104:85–90.

    Article  PubMed  CAS  Google Scholar 

  11. Di Lisa F, Blank PS, Colonna R, Gambassi G, Silverman HS, Stern MD, Hansford RG. 1995. Mitochondrial membrane potential in single living adult rat cardiac myocytes exposed to anoxia or metabolic inhibition. J Physiol (Lond) 486:1–13.

    Google Scholar 

  12. Jia L, Allen PD, Macey MG, Grahn MF, Newland AC, Kelsey SM. 1997. Mitochondrial electron transport chain activity, but not ATP synthesis, is required for drug-induced apoptosis in human leukaemic cells: a possible novel mechanism of regulating drug resistance. Br J Haematol 98:686–698.

    Article  PubMed  CAS  Google Scholar 

  13. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. 1997. The release of cytochrome C from mitochondrial primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136.

    Article  PubMed  CAS  Google Scholar 

  14. Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G. 1996. Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 384:53–57.

    Article  PubMed  CAS  Google Scholar 

  15. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. 1998. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275: HI567–1576.

    Google Scholar 

  16. Xu M, Tang PL, Qian ZM, Ashraf M. 2001. Effects by doxorubicin on the myocardium are mediated by oxygen free radicals. Life Sei 68:889–901.

    Article  CAS  Google Scholar 

  17. Xu M, Wang Y, Hirai K, Ayub A, Ashraf M. 2001. Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. Am J Physiol 280:H899–908.

    CAS  Google Scholar 

  18. Reers M, Smiley ST, Mattola-Hartshorn C, Chen A, Lin M, Chen LB. 1995. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417.

    Article  PubMed  CAS  Google Scholar 

  19. Troyan MB, Gilman VR, Gay CV. 1997. Mitochondrial membrane potential changes in osteoblasts treated with parathyroid hormone and estradiol. Exp Cell Res 233:274–280.

    Article  PubMed  CAS  Google Scholar 

  20. Green DR, Reed JC. 1998. Mitochondria and apoptosis. Science 281:1309–1312.

    Article  PubMed  CAS  Google Scholar 

  21. Kantrow SP, Piantadosi CA. 1997. Release of cytochrome c from liver mitochondria during permeability transition. Biochem Biophys Res Commun 232:669–671.

    Article  PubMed  CAS  Google Scholar 

  22. Adams JW, Pagel AL, Means CK, Oksenberg D, Armstrong RC, Brown JH. 2000. Cardiomyocyte apoptosis induced by Gαq signaling is mediated by permeability transition pore formation and activation of the mitochondrial death pathway. Circ Res 87:1180–1187.

    Article  PubMed  CAS  Google Scholar 

  23. Sparagna GC, Hickson-Bick DL, Buja LM, McMillin JB. 2000. A metabolic role for mitochondria in palmitate-induced cardiac myocyte apoptosis. Am J Physiol Heart Circ Physiol 279:H2124–2132.

    PubMed  CAS  Google Scholar 

  24. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S. 2000. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 87:118–125.

    Article  PubMed  CAS  Google Scholar 

  25. Delcamp TJ, Dales C, Ralenkotter L, Cole PS, Hadley RW. 1998. Intramitochondrial [Ca2+] and membrane potential in ventricular myocytes exposed to anoxia-reoxygenation. Am J Physiol Heart Circ Physiol 275:H484–494.

    CAS  Google Scholar 

  26. Duchen MR. 2000. Mitochondria and calcium: from cell signaling to cell death. J Physiol 529:57–68.

    Article  PubMed  CAS  Google Scholar 

  27. Scheffler IE. 1999. Mitochondrial electron transport and oxidative phosphorylation. In: Mitochondria, 141–245. New York: Wiley-Liss.

    Chapter  Google Scholar 

  28. Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP. 2000. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 475:267–272.

    Article  PubMed  CAS  Google Scholar 

  29. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Herman B. 1997. The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury. Mol Cell Biochem 174:159–165.

    Article  PubMed  CAS  Google Scholar 

  30. Holmuhamedov EL, Wang L, Terzic A. 1999. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J Physiol 519:347–360.

    Article  PubMed  CAS  Google Scholar 

  31. Crestanello JA, Doliba NM, Babsky AM, Doliba NM, Niibori K, Osbakken MD, Whitman GJ. 2000. Opening of potassium channels protects mitochondrial function from calcium overload. J Surg Res 94:116–123.

    Article  PubMed  CAS  Google Scholar 

  32. Ishida H, Hirota Y, Genka C, Nakazawa H, Nakaya H, Sato T. 2001. Opening of mitochondrial KATP channels attenuates the ouabain-induced calcium overload in mitochondria. Circ Res 89:856–858.

    Article  PubMed  CAS  Google Scholar 

  33. Takashi E, Wang Y, Ashraf M. 1999. Activation of mitochondrial KATP channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ Res 85:1146–1153.

    Article  PubMed  CAS  Google Scholar 

  34. Murata M, Akao M, O’Rourke B, Marban E. 2001. Mitochondrial ATP-sensitive potassium channels attenuate matrix Ca2+ overload during simulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res 89:891–898.

    Article  PubMed  CAS  Google Scholar 

  35. Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD. 2001. Bioenergetic consequences of opening the ATP-sensitive K+ channel of heart mitochondria. Am J Physiol 280:H649–H657.

    CAS  Google Scholar 

  36. Carroll R, Gant VA, Yellon DM. 2001. Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res 51: 691–700.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ashraf PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, M., Wang, Y., Ayub, A., Ashraf, M. (2003). Role of Mitochondrial Membrane Potential in Cardiac Protection against Ischemia. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics