Mechanisms for Ischemia/Reperfusion Injury: Application of 23Na Magnetic Resonance Spectroscopy

Part of the Progress in Experimental Cardiology book series (PREC, volume 6)


Intracellular sodium concentration ([Na+]i) of myocardium dramatically increases during ischemia and rapidly returns after reperfusion. [Na+]i kinetics during ischemia/reper-fusion is coupled with those of other important ions such as Ca2+ and K+. Na+ movement of intact perfused heart can be easily detected by 23Na nuclear magnetic resonance spectroscopy (MRS) combined with a shift reagent. Furthermore, the sequential [Na+]i measurement is possible due to the nucleus’ abundance in living tissue and high NMR sensitivity. Thus, 23Na-MRS has been considered to be very valuable informative method in the research of ischemia/reperfusion injury. We have applied 23Na-MRS to elucidate the mechanisms for [Na+]i kinetics during ischemia/reperfusion and its role in injury. This technique combined with quantitative method provides understanding of underlying mechanism for the alteration of ion homeostasis during ischemia/reperfusion as well as [Na+]i movement.

Key words

intracellular Na+ concentration ion homeostasis Na+ kinetics shift reagent 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kusuoka H, Marban E. 1992. Cellular mechanism of myocardial stunning. Annu Rev Physiol 54:243–256.PubMedCrossRefGoogle Scholar
  2. 2.
    Kusuoka H, Marban E. 1994. Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? J Clin Invest 93:1216–23.PubMedCrossRefGoogle Scholar
  3. 3.
    Steenbergen C, Murphy E, Watts JA, London RE. 1990. Correlation between cytosolic free calcium, contracture, ATP and irreversible ischemic injury in perfused rat heart. Circ Res 66:135–146.PubMedCrossRefGoogle Scholar
  4. 4.
    Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, Chacko VP. 1987. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proc Natl Acad Sci USA 84:6005–6009.PubMedCrossRefGoogle Scholar
  5. 5.
    Delayre JL, Ingwall JS, Malloy C, Fossel ET. 1981. Gated sodium-23 nuclear magnetic resonance images of an isolated perfused working rat heart. Science 212:935–936.PubMedCrossRefGoogle Scholar
  6. 6.
    Pike MM, Frazer JC, Dedrick DF, Ingwall JS, Allen PD, Springer CS Jr, Smith TW. 1985. 23Na and 39K nuclear magnetic resonance studies of perfused rat hearts. Discrimination of intra- and extracellular ions using a shift reagent. Biophys J 48:159–173.PubMedCrossRefGoogle Scholar
  7. 7.
    Pike MM, Kitakaze M, Marban E. 1990. 23Na-NMR measurement of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 259:H1767–H1773.PubMedGoogle Scholar
  8. 8.
    Pike MM, Luo CS, Yanagida S, Hageman GR, Anderson PG. 1995. 23Na and 31P nuclear magnetic resonance studies in ischemia-induced ventricular fibrillation: alterations of intracellular Na+ and cellular energy. Circ Res 77:394–406.PubMedCrossRefGoogle Scholar
  9. 9.
    Murphy E, Perlman M, London BJE, Steenbergen C. 1991. Amiloride delays the iscehmia-induced rise in cytosolic free calcium. Circ Res 68:1250–1258.PubMedCrossRefGoogle Scholar
  10. 10.
    Gupta PJC, Gupta P. 1982. Direct observation of resolved resonances from intracellular and extracellular Na-23 ions in NMR-studies of intact-cells and tissue using dysprosium(III) tripolyphosphate as paramagnetic shift-reagent. J Magn Res 47:344–349.Google Scholar
  11. 11.
    Chu SC, Pike MM, Fossel ET, Smith TW, Baischi JA, Springer CS Jr. 1984. Aqueous shift-reagent for high-resolution cationic nuclear magnetic-resonance. 3. Dy(TTHA)3-, TM(TTHA)3-, and Tm(PPP)2 7-. J Magn Res 56:33–47.Google Scholar
  12. 12.
    Buster DC, Castro MM, Geraides CF, Malloy CR, Sherry AD, Siemers TC. 1990. Tm(DOTP)5-: a 23Na+ shift agent for perfused rat hearts. Magn Res Med 15:25–32.CrossRefGoogle Scholar
  13. 13.
    Dizon JM, Tauskela JS, Wise D, Burkhoff D, Cannon PJ, Katz J. 1996. Evaluation of triple-quantum-fdtered 23Na NMR in monitoring of intracellular Na content in the perfused rat heart: comparison of intra- and extracellular transverse relaxation and spectral amplitudes. Magn Res Med 35:336–345.CrossRefGoogle Scholar
  14. 14.
    Shivkumar K, Deutsch NA, Lamp ST, Khuu K, Goldhaber JI, Weiss JN. 1997. Mechanism of hypoxic K loss in rabbit ventricle. J Clin Invest 100:1782–1788PubMedCrossRefGoogle Scholar
  15. 15.
    Van Emous JG, Schreur JHM, Ruigrok TJC, Van Echteid CJA. 1998. Both Na+-K+ ATPase and Na+-H+ exchanger are immediately active upon post-ischemic reperfusion in isolated rat hearts. J Mol Cell Cardiol 30:337–348.PubMedCrossRefGoogle Scholar
  16. 16.
    Imahashi K, Hashimoto K,Yamaguchi H, Nishimura T, Kusuoka H. 1998. Alteration of intracellular Na+ during ischemia in diabetic rat hearts: the role of reduced activity in Na+/H+ exchange against stunning. 30:509–517.Google Scholar
  17. 17.
    Pike MM, Luo CS, Clark MD, Kirk KA, Kitakaze M, Madden MC, Cragoe EJ Jr, Pohost GM. 1993. NMR measurement of Na+ and cellular energy in ischemic rat heart: role of Na+-H+ exchange. Am J Physiol 265:H2017–H2026.PubMedGoogle Scholar
  18. 18.
    Hartmann M, Decking UKM. Blocking Na+-H+ exchange by cariporide reduces Na+-overload in ischemia and is cardioprotective. J Mol Cell Cardiol 31:1985–1995.Google Scholar
  19. 19.
    Karmazyn M. 1991. Amiloride enhances postischemic ventricular recovery: possible role of Na+/H+ exchange. Am J Physiol 255:H608–H615.Google Scholar
  20. 20.
    Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. 1999. The myocardial Na+-H+ exchange: structure, regulation, and its role in heart disease. Circ Res. 85:777–786.PubMedCrossRefGoogle Scholar
  21. 21.
    Van Emous JG, Nederhoff MGJ, Ruigrok TJC, Van Echteld CJA. 1997. The role of the Na+ channel in the accumulation of intracellular Na+ during myocardial ischemia: consequences for post-ischemic recovery. J Mol Cell Cardiol 29:85–96.PubMedCrossRefGoogle Scholar
  22. 22.
    Aiello EA, Petroff MG, Mattiazzi AR, Cingolani HE. 1998. Evidence for the electrogenic Na+-HC03 - symport in rat cardiac myocytes. J Physiol 512:137–148.PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson SE, Dickinson CZ, Liu H, Cala PM. 1996. Effects of Na-K-2Cl cotransport inhibition on myocardial Na and Ca during ischemia and reperfusion. Am J Physiol 270.C608–C618.PubMedGoogle Scholar
  24. 24.
    Imahashi K, Kusuoka H, Hashimoto K, Yoshioka J, Yamaguchi H, Nishimura T. 1999. Intracellular sodium accumulation during ischemia as the substrate for reperfusion injury. Circ Res 84:1401–1406.PubMedCrossRefGoogle Scholar
  25. 25.
    Golden AL, Bright JM, Pohost GM, Pike MM. 1994. Ischemic dysfunction and impaired recovery in hypertensive hypertrophied hearts is associated with exaggerated intracellular sodium accumulation. Am J Hypertens 7:745–754.PubMedGoogle Scholar
  26. 26.
    Yellon DM, Baxter GF. 2000. Sodium-hydrogen exchange in myocardial reperfusion injury. Lancet 356:522–523.PubMedCrossRefGoogle Scholar
  27. 27.
    Strömer H, de Groot MCH, Horn M, Faul C, Leupold A, Morgan JP, Scholz W, Neubauer S. 2000. Na+/H+ exchange inhibition with HOE642 improves postischemic recovery due to attenuation of Ca2+ overload and prolonged acidosis on reperfusion. Circulation 101:2749–2755.PubMedCrossRefGoogle Scholar
  28. 28.
    Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. 1999. The myocardial Na+-H+ exchange: structure, regulation, and its role in heart disease. Circ Res 85:777–786.PubMedCrossRefGoogle Scholar
  29. 29.
    Steenbergen C, Perlman ME, London RE, Murphy E. 1993. Mechanism of preconditioning. Ionic alterations. Circ Res 72:112–125.PubMedCrossRefGoogle Scholar
  30. 30.
    Imahashi K, Nishimura T, Yoshioka J, Kusuoka H. 2001. Role of intracellular Na+ kinetics in preconditioned rat heart. Circ Res 88:1176–1182.PubMedCrossRefGoogle Scholar
  31. 31.
    du Toit EF, Opie H. 1992. Modulation of severity of reperfusion stunning in the isolated rat heart by agents altering calcium flux at onset of reperfusion. Circ Res 70:1180–1190.CrossRefGoogle Scholar
  32. 32.
    Kirkels JH, Ruigrok TJC, Van Echteld CJA, Meijler FL. 1989. Low Ca2+ reperfusion and enhanced susceptibility of the postischemic myocardium. Circ Res. 64:1158–1164.PubMedCrossRefGoogle Scholar
  33. 33.
    Kusuoka H, Hurtado MCC, Marban E. 1993. Role of sodium/calcium exchange in the mechanism of stunning: protective effect reperfusion with high sodium solution. J Am Coll Cardiol 21:240–248.PubMedCrossRefGoogle Scholar
  34. 34.
    Iwamoto T, Watano T, Shigekawa M. 1996. A novel isothiourea derivative selectively inhibits the reverse mode of Na+/Ca2+ exchange in cells expressing NCX1. J Biol Chem 271:22391–22397.PubMedCrossRefGoogle Scholar
  35. 35.
    Elias CL, Lukas A, Shurraw S, Scott J, Omelchenko A, Gross GJ, Hnatowich M, Hryshko LV. 2001. Inhibition of Na+/Ca2+ exchange by KB-R7943: transport mode selectivity and antiarrhythmic consequences. Am J Physiol 281:H1334–H1345.Google Scholar
  36. 36.
    Satoh H, Ginsburg KS, Qing K, Terada H, Hayashi H, Bers DM. 2000. KB-R7943 block of Ca2+ influx via Na+/Ca2+ exchange does not alter twitches or glycoside inotropy but prevents Ca2+ overload in rat ventricular myocytes. Circulation 101:1441–1446.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang WH, Wang Y, Askari A, Zolotarjova N, Ganjeizadeh M. 1994. Differential sensitivities of the Na+/K+-ATPase isoforms to oxidants. Biochim Biophys Acta 1190:108–114.PubMedCrossRefGoogle Scholar
  38. 38.
    Van Emous JG, Vleggeert-Lankamp CLAM, Nederhoff MGJ, Ruigrok TJC, Van Echteld CJA. 2001. Postischemic Na+/K+-ATPase reactivation is delayed in the absence of glycolytic ATP in isolated ATP in isolated rat hearts. Am J Physiol 280:H2189–H2195Google Scholar
  39. 39.
    Fukuda H, Luo CS, Gu X, Guo LL, Digerness SB, Li J, Pike MM. 2001. The effect of KATP channel activation on myocardial cationic and energetic states during ischemia and reperfusion: role in cardioprotection. J Mol Cell Cardiol 33:545–560.PubMedCrossRefGoogle Scholar
  40. 40.
    Ramasamy R, Liu H, Anderson S, Lundmark J, Schaefer S. 1995. Ischemic preconditioning stimulates sodium and proton transport in isolated rat hearts. J Clin Invest 96:1464–1472.PubMedCrossRefGoogle Scholar
  41. 41.
    Shipolini AR, Yokoyama H, Galinanes M, Edmondson SJ, Hearse DJ, Avkiran M. 1997. Na+/H+ exchange activity does not contribute to protection by ischemic preconditioning in the isolated rat heart. Circulation 96:3617–3625.PubMedCrossRefGoogle Scholar
  42. 42.
    Mosca SM, Cingolani HE. 2000. Comparison of the protective effects of ischemic preconditioning and the Na+/H+ exchanger blockade. Naunyn Schmiedebergs Arch Pharmacol. 362:7–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Gumina RJ, Beier N, Schelling P, Gross GJ. 2000. Inhibitors of ischemic preconditioning do not attenuate Na+/H+ exchange inhibitor mediated cardioprotection. J Cardiovasc Pharmacol. 35:949–953.PubMedCrossRefGoogle Scholar
  44. 44.
    Lundmark JA, Trueblood N, Wang LF, Ramasamy R, Schaefer S. Repetitive acidosis protects the ischemic heart: implications for mechanism in preconditioned hearts. 1999. J Mol Cell Cardiol 31:907–917.PubMedCrossRefGoogle Scholar
  45. 45.
    Cross HR. 2000. Trimetazidine: a novel protective role via maintenance of Na+/K+-ATPase activity? Cardiovasc Res 47:637–639.PubMedCrossRefGoogle Scholar
  46. 46.
    El Banani H, Bernard M, Baetz D, Cabanes E, Cozzone P, Lucien A, James F, Feuvray D. Changes in intracellular sodium and pH during ischemia-reperfusion are attenuated by trimetazidine. Comparison between low- and zero-flow ischaemia. 2000. Cardiovasc Res. 47:688–696.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Division of Tracer KineticsOsaka University Graduate School of MedicineOsakaJapan
  2. 2.Institute for Clinical ResearchOsaka National HospitalOsakaJapan

Personalised recommendations