Skip to main content

Ca2+—Dependent Signaling Pathways Through Calcineurin and Ca2+ Calmodulin—Dependent Protein Kinase in Development of Cardiac Hypertrophy

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Summary

Cardiac hypertrophy is induced by a variety of cardiovascular diseases such as hypertension, valvular diseases, myocardial infarction, cardiomyopathy, and endocrine disorders. Although cardiac hypertrophy may be initially a beneficial response that normalizes wall stress and maintains normal cardiac function, prolonged hypertrophy becomes a leading cause of heart failure and sudden death. A number of studies have elucidated molecules responsible to the development of cardiac hypertrophy, including protein kinase C (PKC), protein kinase A (PKA), Raf-1 kinase, mitogen-activated protein (MAP) kinase family, and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) family, Ras, and Rho family. It has been reported that Ca2+ regulates a number of cellular processes including cardiac hypertrophy. Since most hypertrophic signaling pathways are associated with an increase in intracellular Ca2+, Ca2+-dependent signaling pathways may be critical targets for therapies designed to prevent the progression of cardiac hypertrophy. Recently, a Ca2+/calmodulin-dependent protein kinase, and a Ca2+/calmodulin-dependent protein phosphatase, calcineurin, have attracted much attention as critical molecules that induce cardiac hypertrophy. In this review, we summarize the Ca2+-dependent signaling pathways through Ca2+/calmodulin-dependent protein kinase and calcineurin in cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komuro I, Yazaki Y. 1993. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55–75.

    Article  PubMed  CAS  Google Scholar 

  2. Chien KR. 1999. Stress pathways and heart failure. Cell 98:555–558.

    Article  PubMed  CAS  Google Scholar 

  3. Zou Y, Takano H, Akazawa H, Nagai T, Mizukami M, Komuro I. 2002. Molecular and cellular mechanisms of mechanical stress-induced cardiac hypertrophy. Endocr J 49:1–13.

    Article  PubMed  CAS  Google Scholar 

  4. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP. 1990. Prognostic implications of echocar-diographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  5. Berridge MJ, Bootman MD, Lipp P. 1998. Calcium-a life and death signal. Nature 395:645–648.

    Article  PubMed  CAS  Google Scholar 

  6. Bogoyevitch MA, Andersson MB, Gillespie-Brown J, Clerk A, Glennon PE, Fuller SJ, Sugden PH. 1996. Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. Biochem J 314:115–121.

    PubMed  CAS  Google Scholar 

  7. Yamazaki T, Komuro I, Zou Y, Kudoh S, Shiojima I, Hiroi Y, Mizuno T, Aikawa R, Takano H, Yazaki Y. 1997. Norepinephrine induces the raf-1 kinase/MAP kinase cascade through both α1- and β-adrenoceptors. Circulation 95:1260–1268.

    Article  PubMed  CAS  Google Scholar 

  8. Yamazaki T, Komuro I, Zou Y, Kudoh S, Mizuno T, Hiroi Y, Shiojima I, Takano H, Kinugawa K, Kohmoto O, Takahashi T, Yazaki Y. 1997. Protein kinase A and protein kinase C synergistically activate the Raf-1 kinase/mitogen-activated protein kinase cascade in neonatal rat cardiomyocytes. J Mol Cell Cardiol 29:2491–2501.

    Article  PubMed  CAS  Google Scholar 

  9. Nabauer M, Morad M. 1990. Ca2+-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am J Physiol 258:C189–193.

    PubMed  CAS  Google Scholar 

  10. Sham JS, Cleemann L, Morad M. 1995. Functional coupling of Ca2+ channels and ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 92:121–125.

    Article  PubMed  CAS  Google Scholar 

  11. Sigurdson W, Ruknudin A, Sachs F. 1992. Ca2+ imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262:H1110-1115.

    PubMed  CAS  Google Scholar 

  12. Means AR, VanBerkum MF, Bagchi I, Lu KP, Rasmussen CD. 1991. Regulatory functions of calmodulin. Pharmacol Ther 50:255–270.

    Article  PubMed  CAS  Google Scholar 

  13. Gruver CL, DeMayo F, Goldstein MA, Means AR. 1993. Targeted developmental overexpression of calmodulin induces proliferative and hypertrophic growth of cardiomyocytes in transgenic mice. Endocrinology 133:376–388.

    Article  PubMed  CAS  Google Scholar 

  14. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I. 2000. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1-induced cardiomyocyte hypertrophy. J Biol Chem 275:15239–15245.

    Article  PubMed  CAS  Google Scholar 

  15. Zou Y, Yao A, Zhu W, Kudoh S, Hiroi Y, Shimoyama M, Uozumi H, Kohmoto O, Takahashi T, Shibasaki F, Nagai R, Yazaki Y, Komuro I. 2001. Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin. Circulation 104:102–108.

    Article  PubMed  CAS  Google Scholar 

  16. Braun AP, Schulman H. 1995. The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57:417–445.

    Article  PubMed  CAS  Google Scholar 

  17. McDonough PM, Glembotski CC. 1992. Induction of atrial natriuretic factor and myosin light chain-2 gene expression in cultured ventricular myocytes by electrical stimulation of contraction. J Biol Chem 267:11665–11668.

    PubMed  CAS  Google Scholar 

  18. Ramirez MT, Zhao XL, Schulman H, Brown JH. 1997. The nuclear δB isoform of Ca2+/ calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272:31203–31208.

    Article  PubMed  CAS  Google Scholar 

  19. Irons CE, Sei CA, Hidaka H, Glembotski CC. 1992. Protein kinase C and calmodulin kinase are required for endothelin-stimulated atrial natriuretic factor secretion from primary atrial myocytes. J Biol Chem 267:5211–5216.

    PubMed  CAS  Google Scholar 

  20. Zhu W, Zou Y, Shiojima I, Kudoh S, Aikawa R, Hayashi D, Mizukami M, Toko H, Shibasaki F, Yazaki Y, Nagai R, Komuro I. 2000. Ca2+/calmodulin-dependent kinase II and calcineurin play critical roles in endothelin-1 -induced cardiomyocyte hypertrophy. J Biol Chem 275:15239–15245.

    Article  PubMed  CAS  Google Scholar 

  21. Miyano O, Kameshita I, Fujisawa H. 1992. Purification and characterization of a brain-specific multifunctional calmodulin-dependent protein kinase from rat cerebellum. J Biol Chem 267:1198–1203.

    PubMed  CAS  Google Scholar 

  22. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN. 2000. CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406.

    Article  PubMed  CAS  Google Scholar 

  23. McKinsey TA, Zhang CL, Olson EN. 2002. MEF2: a calcium-dependent regulator of the cell division, differentiation and death. Trends Biochem Sci 27:40–47.

    Article  PubMed  CAS  Google Scholar 

  24. Lin Q, Schwarz J, Bucana C, Olson EN. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407.

    Article  PubMed  CAS  Google Scholar 

  25. Mao Z, Bonni A, Xia F, Nadal-Vicens M, Greenberg ME. 1999. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286:785–790.

    Article  PubMed  CAS  Google Scholar 

  26. Youn HD, Sun L, Prywes R, Liu JO. 1999. Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 286:790–793.

    Article  PubMed  CAS  Google Scholar 

  27. Mao Z, Wiedmann M. 1999. Calcineurin enhances MEF2 DNA binding activity in calcium-dependent survival of cerebellar granule neurons. J Biol Chem 274:31102–31107.

    Article  PubMed  CAS  Google Scholar 

  28. Han J, Molkentin JD. 2000. Regulation of MEF2 by p38 MAPK and its implication in cardiomyocytes biology. Trends Cardiovasc Med 10:19–22.

    Article  PubMed  CAS  Google Scholar 

  29. Kolodziejczyk SM, Wang L, Balazsi K, DeRepentigny Y, Kothary R, Megeney LA. 1999. MEF2 is upregulated during cardiac hypertrophy and is required for normal post-natal growth of the myocardium. Curr Biol 9:1203–1206.

    Article  PubMed  CAS  Google Scholar 

  30. Molkentin JD, Markham BE. 1993. Myocyte-specific enhancer-binding factor (MEF-2) regulate α-cardiac myosin heavy chain gene expression in vitro and in vivo. J Biol Chem 268:19512–19520.

    PubMed  CAS  Google Scholar 

  31. Lu J, McKinsey TA, Nicol RL, Olson EN. 2000. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 97: 4070–4075.

    Article  PubMed  CAS  Google Scholar 

  32. Gray SG, Ekstrom TJ. 2001. The human histone deacetylase family. Exp Cell Res 262:75–83.

    Article  PubMed  CAS  Google Scholar 

  33. McKinsey TA, Zhang CL, Lu J, Olson EN. 2000. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111.

    Article  PubMed  CAS  Google Scholar 

  34. Grozinger CM, Schreiber SL. 2000. Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sei USA 97:7835–7840.

    Article  CAS  Google Scholar 

  35. McKinsey TA, Zhang CL, Olson EN. 2000. Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA 97:14400–14405.

    Article  PubMed  CAS  Google Scholar 

  36. Tzivion G, Avruch J. 2002. 14-3-3 proteins: active cofactors in cellular regulation by serine/ threonine phosphorylation. J Biol Chem 277:3061–3064.

    Article  PubMed  CAS  Google Scholar 

  37. Klee CB, Ren H, Wang X. 1998. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem 273:13367–13370.

    Article  PubMed  CAS  Google Scholar 

  38. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN. 1998. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93:215–228.

    Article  PubMed  CAS  Google Scholar 

  39. De Windt LJ, Lim HW, Taigen T, Wencker D, Condorelli G, Dorn GW II, Kitsis RN, Molkentin JD. 2000. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: an apoptosis-independent model of dilated heart failure. Circ Res 86:255–263.

    Article  PubMed  Google Scholar 

  40. Sussman MA, Lim HW, Gude N, Taigen T, Olson EN, Robbins J, Colbert MC, Gualberto A, Wieczorek DF, Molkentin JD. 1998. Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281:1690–1693.

    Article  PubMed  CAS  Google Scholar 

  41. Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF. 1999. Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circ Res 84:735–740.

    Article  PubMed  CAS  Google Scholar 

  42. Shimoyama M, Hayashi D, Takimoto E, Zou Y, Oka T, Uozumi H, Kudoh S, Shibasaki F, Yazaki Y, Nagai R, Komuro I. 1999. Calcineurin plays a critical role in pressure overload-induced cardiac hypertrophy. Circulation 100:2449–2454.

    Article  PubMed  CAS  Google Scholar 

  43. Eto Y, Yonekura K, Sonoda M, Arai N, Sata M, Sugiura S, Takenaka K, Gualberto A, Hixon ML, Wagner MW, Aoyagi T. 2000. Calcineurin is activated in rat hearts with physiological left ventricular hypertrophy induced by voluntary exercise training. Circulation 101:2134–2137.

    Article  PubMed  CAS  Google Scholar 

  44. Hill JA, Karimi M, Kutschke W, Davisson RL, Zimmerman K, Wang Z, Kerber RE, Weiss RM. 2000. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101:2863–2869.

    Article  PubMed  CAS  Google Scholar 

  45. Lim HW, De Windt LJ, Steinberg L, Taigen T, Witt SA, Kimball TR, Molkentin JD. 2000. Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101:2431–2437.

    Article  PubMed  CAS  Google Scholar 

  46. Murat A, Pellieux C, Brunner HR, Pedrazzini T. 2000. Calcineurin blockade prevents cardiac mitogen-activated protein kinase activation and hypertrophy in renovascular hypertension. J Biol Chem 275:40867–40873.

    Article  PubMed  CAS  Google Scholar 

  47. Oie E, Bjornerheim R, Clausen OP, Attramadal H. 2000. Cyclosporin A inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats. Am J Physiol 278:H2115–2123.

    CAS  Google Scholar 

  48. Sakata Y, Masuyama T, Yamamoto K, Nishikawa N, Yamamoto H, Kondo H, Ono K, Otsu K, Kuzuya T, Miwa T, Takeda H, Miyamoto E, Hori M. 2000. Calcineurin inhibitor attenuates left ventricular hypertrophy, leading to prevention of heart failure in hypertensive rats. Circulation 102:2269–2275.

    Article  PubMed  CAS  Google Scholar 

  49. Luo Z, Shyu KG, Gualberto A, Walsh K. 1998. Calcineurin inhibitors and cardiac hypertrophy. Nat Med 4:1092–1093.

    Article  PubMed  CAS  Google Scholar 

  50. Ding B, Price RL, Borg TK, Weinberg EO, Halloran PF, Lorell BH. 1999. Pressure overload induces severe hypertrophy in mice treated with cyclosporin, an inhibitor of calcineurin. Circ Res 84: 729–734.

    Article  PubMed  CAS  Google Scholar 

  51. Zhang W, Kowal RC, Rusnak F, Sikkink RA, Olson EN, Victor RG. 1999. Failure of calcineurin inhibitors to prevent pressure-overload left ventricular hypertrophy in rats. Circ Res 84:722–728.

    Article  PubMed  CAS  Google Scholar 

  52. Hayashida W, Kihara Y, Yasaka A, Sasayama S. 2000. Cardiac calcineurin during transition from hypertrophy to heart failure in rats. Biochem Biophys Res Commun 273:347–351.

    Article  PubMed  CAS  Google Scholar 

  53. Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S, Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, Komuro I. 2001. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 104:97–101.

    Article  PubMed  CAS  Google Scholar 

  54. Fuentes JJ, Pritchard MA, Estivill X. 1997. Genomic organization, alternative splicing, and expression patterns of the DSCR1 (Down syndrome candidate region 1) gene. Genomics 44:358–361.

    Article  PubMed  CAS  Google Scholar 

  55. Miyazaki T, Kanou Y, Murata Y, Ohmori S, Niwa T, Maeda K, Yamamura H, Seo H. 1996. Molecular cloning of a novel thyroid hormone-responsive gene, ZAKI-4, in human skin fibroblasts. J Biol Chem 271:14567–14571.

    Article  PubMed  CAS  Google Scholar 

  56. Rothermel B, Vega RB, Yang J, Wu H, Bassel-Duby R, Wilhams RS. 2000. A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling. J Biol Chem 275:8719–8725.

    Article  PubMed  CAS  Google Scholar 

  57. Yang J, Rothermel B, Vega RB, Frey N, McKinsey TA, Olson EN, Bassel-Duby R, Wilhams RS. 2000. Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ Res 87:e61–e68.

    Article  PubMed  CAS  Google Scholar 

  58. Rothermel BA, McKinsey TA, Vega RB, Nicol RL, Mammen P, Yang J, Antos CL, Shelton JM, Bassel-Duby R, Olson EN, Williams RS. 2001. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc Natl Acad Sei USA 98:3328–3333.

    Article  CAS  Google Scholar 

  59. Esposito G, Rapacciuolo A, Naga Prasad SV, Prasad N, Takaoka H, Thomas SA, Koch WJ, Rockman HA. 2002. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105:85–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Komuro MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Takano, H. et al. (2003). Ca2+—Dependent Signaling Pathways Through Calcineurin and Ca2+ Calmodulin—Dependent Protein Kinase in Development of Cardiac Hypertrophy. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics