Skip to main content

Role of Mitochondrial KATP Channels in Improved Ischemic Tolerance of Chronically Hypoxic Adult and Immature Hearts

  • Chapter
  • 127 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

Summary

Adaptation to chronic hypoxia increases cardiac tolerance to acute ischemia/reperfusion injury, which manifests itself as a reduction of myocardial infarct size, improvement of post-ischemic contractile dysfunction and limitation of life-threatening ventricular arrhythmias. Hearts of chronically hypoxic adult animals can be further protected by classic ischemic preconditioning but the effects of these two phenomena are not additive. It appears that adaptation to hypoxia does not increase the total capacity of endogenous protective mechanisms. Moreover, the antiarrhythmic threshold of preconditioning is increased in chronically hypoxic animals.

Hearts of newborn animals which are “adapted” to hypoxic conditions in utero are more tolerant to ischemia/reperfusion injury than adults and can be further protected neither by preconditioning nor by prenatal exposure to chronic hypoxia. Decreasing cardiac ischemic tolerance after birth can be prevented by postnatal exposure to chronic hypoxia. In the rat, preconditioning develops only during the first postnatal week; unlike in adults, combination of chronic hypoxia and preconditioning provides better protection than each of the two conditions alone.

Although the detailed mechanism of cardioprotection induced by chronic hypoxia is unknown, several studies using selective pharmacological modulators of mitoKATP suggest that activation of these channels plays an important role. Considering their involvement also in various forms of preconditioning, mitoKATP may serve as the common component of both short-term and long-term cardioprotective mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yellon DM, Baxter GF, Garcia-Dorado D, Heusch G, Sumeray MS. 1998. Ischaemic preconditioning: present position and future directions. Cardiovasc Res 37:21–33.

    Article  PubMed  CAS  Google Scholar 

  2. Cohen MV, Baines CP, Downey JM. 2000. Ischemic preconditioning: from adenosine receptor to KATP channel. Annu Rev Physiol 62:79–109.

    Article  PubMed  CAS  Google Scholar 

  3. Bolli R. 2000. The late phase of preconditioning. Circ Res 87:972–983.

    Article  PubMed  CAS  Google Scholar 

  4. Kopecky M, Daum S. 1958. Tissue adaptation to anoxia in rat myocardium. Cs Fysiol 7:518–521.

    Google Scholar 

  5. Heath D, Wilhams DR. 1981. Man at High Altitude. Edinburgh: Churchil Livingstone.

    Google Scholar 

  6. Meerson FZ, Gomzakov OA, Shimkovich MV. 1973. Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis. Am J Cardiol 31:30–34.

    Article  PubMed  CAS  Google Scholar 

  7. Turek Z, Kubat K, Ringnalda BEM, Kreuzer F. 1980. Experimental myocardial infarction in rats acclimated to simulated high altitude. Basic Res Cardiol 75:544–553.

    Article  PubMed  CAS  Google Scholar 

  8. Neckar J, Papousek F, Ostadal B, Novakova O, Kolar F. 2002. Cardioprotective effects of chronic hypoxia and preconditioning are not additive. Basic Res Cardiol 97:161–167.

    Article  PubMed  Google Scholar 

  9. Neckar J, Szarszoi O, Koten L, Papousek F, Ostadal B, Grover GJ, Kolar F. 2002. Effects of mitochondrial KATP modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res 55:567–575.

    Article  PubMed  CAS  Google Scholar 

  10. McGrath JJ, Prochazka J, Pelouch V, Ostadal B. 1973. Physiological responses of rats to intermittent high altitude stress. Effects of age. J Appl Physiol 34:289–293.

    PubMed  CAS  Google Scholar 

  11. Widimsky J, Urbanova D, Ressl J, Ostadal B, Pelouch V, Prochazka J. 1973. Effect of intermittent altitude hypoxia on the myocardium and lesser circulation in the rat. Cardiovasc Res 7: 798–808.

    Article  PubMed  CAS  Google Scholar 

  12. Tajima M, Katayose D, Bessho M, Isoyama S. 1994. Acute ischemic preconditioning and chronic hypoxia independently increase myocardial tolerance to ischemia. Cardiovasc Res 28:312–319.

    Article  PubMed  CAS  Google Scholar 

  13. Poupa O, Krofta K, Prochazka J, Turek Z. 1966. Acclimatization to simulated high altitude and acute cardiac necrosis. Fed Proc 25:1243–1246.

    PubMed  CAS  Google Scholar 

  14. Faltova E, Mraz M, Pelouch V, Prochazka J, Ostadal B. 1987. Increase and regression of the protective effect of high altitude acclimatization on the isoprenaline-induced necrotic lesions in the rat myocardium. Physiol Bohemoslov 36:43–52.

    PubMed  CAS  Google Scholar 

  15. Meerson FZ, Ustinova EE, Orlova EH. 1987. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia. Clin Cardiol 10:783–789.

    Article  PubMed  CAS  Google Scholar 

  16. Meerson FZ, Ustinova EE, Manukhina EB. 1989. Prevention of cardiac arrhythmias by adaptation to hypoxia: regulatory mechanisms and cardiotropic effect. Biomed Biochim Acta 48:S83–S88.

    PubMed  CAS  Google Scholar 

  17. Vovc E. 1998. The antiarrhythmic effect of adaptation to intermittent hypoxia. Folia Med (Plovdiv) 40(suppl 3):51–54.

    CAS  Google Scholar 

  18. Lishmanov YU, Uskina EV, Krylatov AV, Kondratiev BY, Ugdyzhekova DS, Maslov LN. 1998. A modulated effect of endogenous opioids on antiarrhythmic effect of hypoxic adaptation (in Russian). Russian J Physiol 84:363–372.

    CAS  Google Scholar 

  19. Asemu G, Papousek F, Ostadal B, Kolar F. 1999. Adaptation to high altitude hypoxia protects the heart agains ischemia-induced arrhythmias. Involvement of mitochondrial KATP channel. J Mol Cell Cardiol 31:1821–1831.

    Article  PubMed  CAS  Google Scholar 

  20. Asemu G, Neckar J, Szarszoi O, Papousek F, Ostadal B, Kolar F. 2000. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats. Physiol Res 49:597–606.

    PubMed  CAS  Google Scholar 

  21. Nishioka K, Jarmakani J. 1982. Effect of ischemia on mechanical function and high-energy phosphates in rabbit myocardium. Am J Physiol 242:H1077-H1083.

    PubMed  CAS  Google Scholar 

  22. Bove EL, Stammers AH. 1986. Recovery of left ventricular function after hypothermic global ischemia. J Thorac Cardiovasc Surg 91:115–122.

    PubMed  CAS  Google Scholar 

  23. Baker EJ, Boerboom LE, Olinger GN, Baker JE. 1995. Tolerance of the developing heart to ischemia: impact of hypoxemia from birth. Am J Physiol 268:H1165-H1173.

    PubMed  CAS  Google Scholar 

  24. Julia P, Young HH, Buckberg GD, Kofsky ER, Bugyi HI. 1990. Studies of myocardial protection in the immature heart. II. Evidence for importance of amino acid metabolism in tolerance to ischemia. J Thorac Cardiovasc Surg 100:888–895.

    PubMed  CAS  Google Scholar 

  25. Baker JE, Boerboom LE, Olinger GN. 1990. Is protection of ischemic neonatal myocardium by cardioplegia species dependent? J Thorac Cardiovasc Surg 99:280–287.

    PubMed  CAS  Google Scholar 

  26. Yano Y, Braimbridge MV, Hearse DJ. 1987. Protection of the pediatric myocardium: differential susceptibility to ischemic injury of the neonatal rat heart. J Thorac Cardiovasc Surg 94:887–896.

    PubMed  CAS  Google Scholar 

  27. Riva E, Hearse DJ. 1993. Age-dependent changes in myocardial susceptibility to ischemic injury. Cardioscience 4:85–92.

    PubMed  CAS  Google Scholar 

  28. Ostadalova I, Ostadal B, Kolar F, Parratt JR, Wilson S. 1998. Tolerance to ischaemia and ischaemic preconditioning in neonatal rat heart. J Mol Cell Cardiol 30:857–865.

    Article  PubMed  CAS  Google Scholar 

  29. Ostadalova I, Ostadal B, Jarkovska D, Kolar F. 2002. Combination of the protective effect of adaptation to chronic hypoxia and ischemic preconditioning in neonatal rat heart. Pediatr Res 52:561–567.

    PubMed  CAS  Google Scholar 

  30. Ostadal B, Ostadalova I, Dhalla NS. 1999. Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects. Physiol Rev 73:635–659.

    Google Scholar 

  31. Ferdinandy P, Szilvassy Z, Baxter GF. 1998. Adaptation to myocardial stress in diseased states: is preconditioning a healthy heart phenomenon? Trends Pharmacol Sei 19:223–229.

    Article  CAS  Google Scholar 

  32. Baker JE, Holman P, Gross GJ. 1999. Preconditioning in immature rabbit hearts: role of KATP channels. Circulation 99:1249–1254.

    Article  PubMed  CAS  Google Scholar 

  33. Ostadal B, Kolar F, Pelouch V, Prochazka J, Widimsky J. 1994. Intermittent high altitude and the cardiopulmonary system. In: The Adapted Heart. Ed. M Nagano, N Takeda, NS Dhalla, 173–182. New York: Raven Press.

    Google Scholar 

  34. Kolar F. 1996. Cardioprotective effects of chronic hypoxia: relation to preconditioning. In: Myocardial Preconditioning. Ed. Wainwright CL, Parratt JR, 261–275. Austin: RG Landes.

    Google Scholar 

  35. Cameron JS, Baghdady R. 1994. Role of ATP sensitive potassium channels in long term adaptation to metabolic stress. Cardiovasc Res 28:788–796.

    Article  PubMed  CAS  Google Scholar 

  36. Inoue I, Nagase H, Kishi K, Higuti T. 1991. ATP-sensitive K+ channels in the mitochondrial inner membrane. Nature 352:244–247.

    Article  PubMed  CAS  Google Scholar 

  37. Neckar J, Papousek F, Ostadal B, Novakova O, Kolar F. 1999. Antiarrhythmic effect of adaptation to high altitude hypoxia is abolished by 5-hydroxydecanoate. J Mol Cell Cardiol 31:A51.

    Article  Google Scholar 

  38. Grover GJ, D’Alonzo AJ, Garlid KD, Bajgar R, Lodge NJ, Sleph PG, Darbenzio RB, Hess TA, Smith MA, Paucek P, Atwal KS. 2001. Pharmacologic characterization of BMS-191095, a mitochondrial KATP opener with no peripheral vasodilator or action potential shortening activity. J Pharmacol Exp Therapeut 297:1184–1192.

    CAS  Google Scholar 

  39. Rovnyak GC, Ahmed SZ, Ding CZ et al. 1997. Cardioselective antiischemic ATP-sensitive potassium channel (KATP) openers. 5. Identification of 4-(N-aryl)-substituted benzopyran derivatives with high selectivity. J Med Chem 40:24–34.

    Article  PubMed  CAS  Google Scholar 

  40. Baker JE, Curry BD, Olinger GN, Gross GJ. 1997. Increased tolerance of the chronically hypoxic immature heart to ischemia. Contribution of the KATP channel. Circulation 95:1278–1285.

    Article  PubMed  CAS  Google Scholar 

  41. Eells JT, Henry MM, Gross GJ, Baker JE. 2000. Increased mitochondrial KATP channel activity during chronic myocardial hypoxia: is cardioprotection mediated by improved bioenergetics? Circ Res 87:915–921.

    Article  PubMed  CAS  Google Scholar 

  42. Kong X, Tweddell JS, Gross GJ, Baker JE. 2001. Sarcolemmal and mitochondrial KATP channels mediate cardioprotection in chronically hypoxic hearts. J Mol Cell Cardiol 33:1041–1045.

    Article  PubMed  CAS  Google Scholar 

  43. Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HNM, Darbenzio RB, D’Alonzo AJ, Lodge NJ, Smith MA, Grover GJ. 1997. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels. Possible mechanism of cardioprotection. Circ Res 81:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  44. Ghosh S, Standen NB, Galinanes M. 2000. Evidence for mitochondrial KATP channels as effectors of human myocardial preconditioning. Cardiovasc Res 45:934–940.

    Article  PubMed  CAS  Google Scholar 

  45. Fryer PJV1, Ells JT, Hsu AK, Henry MM, Gross GJ. 2000. Ischemic preconditioning in rats: role of mitochondrial KATP channel in preservation of mitochondrial function. Am J Physiol 278: H305-H312.

    CAS  Google Scholar 

  46. Bernardo NL, D’Angelo M, Okubo S, Joy A, Kukreja RC. 1999. Delayed ischemic preconditioning is mediated by opening of ATP-sensitive potassium channels in the rabbit heart. Am J Physiol 276:H1323-H1330.

    PubMed  CAS  Google Scholar 

  47. Takashi E, Wang Y, Ashraf M. 1999. Activation of mitochondrial KATP channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ Res 85:1146–1153.

    Article  PubMed  CAS  Google Scholar 

  48. Macho P, Solis E, Sanchez G, Schwarze H, Domenech R. 2000. Mitochondrial ATP dependent potassium channels mediate non-ischemic preconditioning by tachycardia in dogs. Mol Cell Biochem 216:129–136.

    Article  Google Scholar 

  49. Pell TJ, Baxter GF, Yellon DM, Drew GM. 1998. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Physiol 275:H1542-H1547.

    PubMed  CAS  Google Scholar 

  50. Grover GJ, Garlid KD. 2000. ATP-sensitive potassium channels: A review of their cardioprotective pharmacology. J Mol Cell Cardiol 32:677–695.

    Article  PubMed  CAS  Google Scholar 

  51. O’Rourke B. 2000. Myocardial KATP channels in preconditioning. Circ Res 87:845–855.

    Article  PubMed  Google Scholar 

  52. Miura T, Liu Y, Kita H, Ogawa T, Shimamoto K. 2000. Roles of mitochondrial ATP-sensitive K channels and PKC in anti-infarct tolerance afforded by adenosine Al receptor activation. J Am Coll Cardiol 35:238–245.

    Article  PubMed  CAS  Google Scholar 

  53. Sato T, O’Rourke B, Marban E. 1998. Modulation of mitochondrial ATP-dependent K+ channels by protein kinase C. Circ Res 83:110–114.

    Article  PubMed  CAS  Google Scholar 

  54. Wang Y, Hirai K, Ashraf M. 1999. Activation of mitochondrial ATP-sensitive K+ channel for cardiac protection against ischemic injury is dependent on protein kinase C activity. Circ Res 85:731–741.

    Article  PubMed  CAS  Google Scholar 

  55. Goldberg M, Zhang HL, Steinberg SF. 1997. Hypoxia alters the subcellular distribution of protein kinase C isoforms in neonatal rat ventricular myocytes. J Clin Invest 99:55–61.

    Article  PubMed  CAS  Google Scholar 

  56. Ping P, Zhang J, Qiu Y, Tang XL, Manchikalapudi S, Cao X, Bolli R. 1997. Ischemic preconditioning induces selective translocation of protein kinase C isoforms epsilon and eta in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81:404–414.

    Article  PubMed  CAS  Google Scholar 

  57. Rouet-Benzineb P, Eddahibi S, Raffestin B, Laplace M, Depond S, Adnot S, Crozatier B. 1999. Induction of cardiac nitric oxide synthase 2 in rats exposed to chronic hypoxia. J Mol Cell Cardiol 31:1697–1708.

    Article  PubMed  CAS  Google Scholar 

  58. Novak F, Markova I, Jezkova J, Kolar F, Neckar J, Novakova O. 2002. Effects of chronic hypoxia and acute ischemia on the expression of PKC isoforms in the rat myocardium. J Mol Cell Cardiol 34:A46.

    Article  Google Scholar 

  59. Jezkova J, Novakova O, Kolar F, Tvrzicka E, Neckar J, Novak F. 2002. Chronic hypoxia alters fatty acid composition of phospholipids in right and left ventricular myocardium. Mol Cell Biochem 232:49–56.

    Article  PubMed  CAS  Google Scholar 

  60. Szarszoi O, Asemu G, Ostadal B, Kolar F. 2001. Role of mitochondrial KATP channels in increased ischemic tolerance of chronically hypoxic rat hearts. J Mol Cell Cardiol 33:A117.

    Article  Google Scholar 

  61. Ferreiro CR, Chagas ACP, Carvalho MHC, Dantas AP, Jatene MB, de Souza LCB, da Luz PL. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease. A novel pathophysiological adaptive mechanism. Circulation 103:2272–2276.

    Google Scholar 

  62. Baker JE, Holman P, Kalyaranaman B, Griffith OW, Pritchard KA. 1999. Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production. Ann NY Acad Sei 874:236–253.

    Article  CAS  Google Scholar 

  63. Szarszoi O, Asemu G, Ostadal B, Kolar F. 2001. Role of nitric oxide in cardioprotection by chronic hypoxia. Physiol Res 50:P27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Kolář .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kolář, F., Ošt’ádalová, I., Ošt’ádal, B., Neckář, J., Szárszoi, O. (2003). Role of Mitochondrial KATP Channels in Improved Ischemic Tolerance of Chronically Hypoxic Adult and Immature Hearts. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics