Skip to main content

Adaptation to Ischemia by in vivo Exposure to Hyperoxia—Signalling through Mitogen Activated Protein Kinases and Nuclear Factor Kappa B

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

Summary

We have established a model of adaptation to ischemia by breathing a hyperoxic gas mixture, which may be directly employed in clinical practice. Hyperoxia improves postischemic function and reduces myocardial necrosis in globally and regionally ischemic rat and mouse hearts, protects hearts of animals with severe atherosclerosis, and modulates in vitro reactivity of isolated aortic rings. Hyperoxic preconditioning is most efficient when the inspired oxygen fraction is >80% oxygen, with different exposure times in rats and mice. In rats the protection is both immediate and delayed, while in mice only immediate protection can be evoked. Exposure to hyperoxia causes an oxidative stress evident as increased serum lipid peroxidation products and reduced antioxidant defence. When breathing hyperoxic gas a rapid nuclear translocation of nuclear factor kappa B (NFκB) in the lungs is followed by a cardiac NFκB activation. In conjunction with hyperoxia the mitogen activated protein kinases (MAPK) p38, ERK1/2, and JNK are phosphorylated in the heart. Pharmacological inhibition of NFκB activation abolished the beneficial effects of hyperoxia. During Langendorff-perfusion with induced global ischemia, phosphorylation of MAPK as well as translocation of NFκB is reduced in animals subjected to hyperoxia prior to the experiments, the latter perhaps due to increased formation of the NFκB inhibitor IkBα. A posssible role for the NFκB-regulated gene inducible nitric oxide synthase (iNOS) in the hyperoxia response was investigated in knock out mice, who had no functional or antiinfarct protection of preconditioning by either hyperoxia or classic ischemic preconditioning. However, neither cardiac iNOS nor contents of antioxidants, heat shock protein 70, or endothelial NOS in the heart increased after hyperoxia. Thus, the signal transduction pathways and organ effectors of hyperoxic protection are not fully determined, but appear to involve MAPK and NFκB. Hyperoxia may have a large potential in the pretreatment of patients undergoing not only open heart procedures, but also in front of any major surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry CE, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: A delay in lethal injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  2. Bolli R, Manchikalapudi S, Tang X-L, Takano H, Qiu Y, Guo Y, Zhang Q, Jadon AK. 1997. The protective effect of late preconditioning against myocardial stunning in conscious rabbits is mediated by nitric oxide synthase. Circ Res 81:1094–1107.

    Article  PubMed  CAS  Google Scholar 

  3. Takano H, Tang XX, Qiu Y, French BA, Bolli R. 1998. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant sensitive mechanism. Circ Res 83:73–84.

    Article  PubMed  CAS  Google Scholar 

  4. Parrat JR, Vegh A. 1999. Coronary vascular endothelium-myocyte interactions in protection of the heart by ischemic preconditioning. J Physiol Pharmacol 50:509–524.

    Google Scholar 

  5. Cohen MV, Baines CP, Downey JM. 2000. Ischemic preconditioning: From adenosine receptor to KATP channel. Ann Rev Physiol 62:79–109.

    Article  CAS  Google Scholar 

  6. Das DK, Engelman RM, Maulik N. 1999. Oxygen free radical signalling in ischemic preconditioning. In: Heart in stress. Ed DK Das, 49-65. New York: Ann NY Acad Sci.

    Google Scholar 

  7. Sato T, Sasaki N, O’Rourke B, Marban E. 2000. Adenosine primes the opening of mitochindrial ATP-sensitive potassium channals: a key step in ischemic preconditioning? Circulation 102:800–805.

    Article  PubMed  CAS  Google Scholar 

  8. de Jong JW, de Jonge R, Keijzer E, Bradamante S. 2000. The role of adenosine in preconditioning. Pharmacol Ther 87:141–149.

    Article  PubMed  Google Scholar 

  9. Zhao TC, Hines DS, Kukreja RC. 2001. Adenosine-induced late preconditioning in mouse hearts: role of p38 MAP kinase and mitochondrial KATP channels. Am J Physiol 280:H1278–H1285.

    CAS  Google Scholar 

  10. Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM. 2000. Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:431–433.

    Article  Google Scholar 

  11. Maulik N, Sato M, Price BD, Das DK. 1998. An essential role of NFkB in tyrosine kinase signalling of p38 MAP kinase regulation of myocardial adaption to ischemia. FEBS letters 429:365–369.

    Article  PubMed  CAS  Google Scholar 

  12. Xuan Y-T, Tang X-L, Banerjee S, Takano H, Li RCX, Han H, Qiu Y, Li J-J, Bolli R. 1999. Nuclear factor-kB plays an essential role in the late phase of ischemic preconditioning in conscious rabbits. Circ Res 84:1095–1109.

    Article  PubMed  CAS  Google Scholar 

  13. Marber MS, Latchman DS, Walker JM, Yellon DM. 1993. Cardiac stress protein elevation 24 hours after brief ischaemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272.

    Article  PubMed  CAS  Google Scholar 

  14. Dana A, Skarli M, Papakrivopoulou J, Yellon DM. 2000. Adenosine A(1) receptor indiced delayed preconditioning in rabbits: induction of p38 mitogen-activated protein kinase activation and HSP27 phosphorylation via tyrosine kinase and protein kinase C dependent mechanism. Circ Res 86:989–997.

    Article  PubMed  CAS  Google Scholar 

  15. Steeves G, Singh N, Singal PK. 1994. Ischemic preconditioning and antioxidant defence against reperfusion injury. In: Cellular, biochemical, and molecular aspects of reperfusion injury. Ed DK Das, 116–127. New York Acad Sci.

    Google Scholar 

  16. Guo Y, Jones WK, Xuan YT, Tang XL, Bao W, Wu WJ, Han H, Laubach VE, Ping P, Yang Z, Qiu Y, Bolli R. 1999. The late phase of ischemic preconditioning is abrogated by targeted disruption of the inducible NO synthase gene. Proc Nad Acad Sci U S A 96:11507–11512.

    Article  CAS  Google Scholar 

  17. Shinmura K, Tang XL, Wang Y, Liu SQ, Takano H, Bhatnagar A, Bolli R. 2000. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci 97:10197–10202.

    Article  PubMed  CAS  Google Scholar 

  18. Maulik N, Goswami S, Galang N, Das DK. 1999. Differential regulation of Bcl-2, AP-1, and NFkB on cardiomyocyte apoptosis during myocardial ischemic stress adaption. FEBS letters 443:331–336.

    Article  PubMed  CAS  Google Scholar 

  19. Valen G, Yan Z-Q, Hansson GK. 2001. Nuclear Factor kappa-B and the heart. Journal of American College of Cardiology 38:307–314.

    Article  CAS  Google Scholar 

  20. Lawrence T, Gilroy DW, Colville-Nash PR, Willoughby DA. 2001. Possible role for NF-kB in the resolution of inflammation. Nature Medicine 7:1291–1297.

    Article  PubMed  CAS  Google Scholar 

  21. Morgan EN, Boyle EM, Yun W, Griscavage-Ennis JM, Farr A, Canty TG, Pohlman TH, Verrier ED. 1999. An essential role for NFkB in the cardioadaptive response to ischemia. Ann Thorac Surg 68:377–382.

    Article  PubMed  CAS  Google Scholar 

  22. Zhao T, Chelliah J, Levasseur JE, Kukreja RC. 2000. Inducible nitric oxide synthase mediates delayed myocardial protection induced by activation of adenosine A(1) receptors: Evidence from geneknockout animals. Circulation 102:902–907.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao TC, Taher MM, Valerie KC, Kukreja RC. 2001. P38 triggers late preconditioning elicited by anisomycin in heart. Involvement of NFkB and iNOS. Circ Res 89:915–922.

    Article  PubMed  CAS  Google Scholar 

  24. von Albertini M, Palmetshofer A, Kaczmarek E, Koziak K, Stroka D, Grey ST, Stuhmeier KM, Robson SC. 1998. Extracellular ATP and ADP activate transcription factor NF-kappaB and induce endothelial cell apoptosis. Biochem Biophys Res Commun 248:822–829.

    Article  Google Scholar 

  25. Nie Z, Mei Y, Ford M, Rybak L, Marcuzzi A, Ren H, Stiles GL, Ramkumar V. 1998. Oxidative stress increases adenosine Al receptor expression by activating nuclear factor kappa B. Mol Pharmacol 53:663–669.

    PubMed  CAS  Google Scholar 

  26. Li C, Tuanzhu T, Liu L, Browder W, Kao RL. 2000. Adenosine prevents activation of transcription factor NF-kB and enhances activator protein-1 binding activity in ischemic rat heart. Surgery 127: 161–169.

    Article  PubMed  CAS  Google Scholar 

  27. Carroll R, Yellon DM. 2000. Delayed cardioprotection in a human cardiomyocyte-derived cell line: the role of adenosine, p38MAP kinase and mitochondrial KATP. Basic Res Cardiol 95:243–249.

    Article  PubMed  CAS  Google Scholar 

  28. Dana A, Jonassen AK, Yamashita N, Yellon DM. 2000. Adenosine A(1) receptor activation induces delayed preconditioning in rats mediated by manganese superoxide dismutase. Circulation 101:2841– 2848.

    Google Scholar 

  29. Zahler S, Kupatt C, Becker BE 2000. Endothelial preconditioning by transient oxidative stress reduces inflammatory responses of cultured endothelial cells to TNF-alpha. FASEB J 14:555–564.

    PubMed  CAS  Google Scholar 

  30. Hiasa G, Hamada M, Ikeda S, Hiwada K. 2001. Ischemic preconditioning and lipopolysaccharide attenuate nuclear factor kappa-B activation and gene expression of inflammatory cytokines in the ischemic-reperfused rat heart. Jpn Circ J 65:984–990.

    Article  PubMed  CAS  Google Scholar 

  31. Carter DA. 1997. Modulation of cellular AP-1 DNA binding activity by heat shock proteins. FEBS Lett 416:81–85.

    Article  PubMed  CAS  Google Scholar 

  32. Vayssier M, Favatier F, Pinot F, Bachelet M, Polla BS. 1998. Tobacco smoke induces coordinate activation of HSF and inhibition of NFkappaB in human monocytes: effects on TNFalpha release. Biochem Biophys Res Commun 252:249–256.

    Article  PubMed  CAS  Google Scholar 

  33. Zhu L, Fukuda S, Cordis G, Das DK, Maulik N. 2001. Anti-apoptotic protein survivin plays a significant role in tubular morphogenesis of human coronary arteliolar endothelial cells by hypoxic preconditioning. FEBS letters 508:369–374.

    Article  PubMed  CAS  Google Scholar 

  34. Erl W, Hansson GK, de Martin R, Draude G, Weber KS, Weber C. 1999. Nuclear factor-kappa B regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells. Circ Res 84:668–677.

    Article  PubMed  CAS  Google Scholar 

  35. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G, Farahani R, McLean M, Ikeda JE, MacKenzie A, et al. 1996. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353.

    Article  PubMed  CAS  Google Scholar 

  36. Valen G, Starkopf J, Takeshima S, Kullisaar T, Vihalemm T, Kengsepp AT, Vaage, J. 1998. Preconditioning with hydrogen peroxide (H202) or ischemia in H202-induced cardiac dysfunction. Free Radic Res 29:235–245.

    Article  PubMed  CAS  Google Scholar 

  37. Tritto I, D’Andrea D, Eramo N, Scognamigho A, De Simone C, Violante A, et al. 1997. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 80:743–748.

    Article  PubMed  CAS  Google Scholar 

  38. Gille JJ, Joenje H. 1992. Cell culture models for oxidative stress: superoxide and hydrogen peroxide versus normobaric hyperoxia. Mutat Res 275:405–414.

    Article  PubMed  CAS  Google Scholar 

  39. Ahotupa M, Mäntylä E, Peltola V, Puntala A, Toivonen H. 1992. Pro-oxidant effects of normobaric hyperoxia in rat tissues. Acta Physiol Scand 145:151–157.

    Article  PubMed  CAS  Google Scholar 

  40. Li Y, Zhang W, Mantell LL, Kazzaz JA, Fein AM, Horowitz S. 1997. Nuclear factor-kappaB is activated by hyperoxia but does not protect from cell death. J Biol Chem 272:20646–20649.

    Article  PubMed  CAS  Google Scholar 

  41. Tähepôld P, Ruusalepp A, Li G, Vaage J, Starkopf J, Valen G. 2002. Cardioprotection by breathing hyperoxic gas—relation to oxygen concentration and exposure time in rats and mice. Eur J cardio-Thor Surg, 21:987–994.

    Article  Google Scholar 

  42. Tähepôld P, Valen G, Starkopf J, Karaine C, Zilmer M, Löwbeer C, Dumitrescu A, Vaage J. 2001. Pretreating rats with hyperoxia attenuates ischaemia-reperfusion injury of the heart. Life Sciences 68:1629–1640.

    Article  Google Scholar 

  43. Li G, Tokuno S, Tähepôld P, Vaage J, Löwbeer C, Valen G. 2001. Ischemic and hyperoxic preconditioning improve myocardial function and reduce infarct size in the severely atherosclerotic mouse heart. Ann Thorac Surg 71:1296–1303.

    Article  PubMed  CAS  Google Scholar 

  44. Tähepôld P, Starkopf J, Vaage J, Valen G. 2002. Hyperoxia elicits preconditioning through a NFkB-dependent mechanism in the rat heart. J Thorac Cardiovasc Surg, in press.

    Google Scholar 

  45. Tähepôld P, Elfström P, Eha I, Kals J, Taal G, Taalonpoika A, Valen G, Vaage J, Starkopf J. 2002. Exposure of rats to hyperoxia enhances the relaxation of isolated aortic rings and reduces the infarct size of isolated hearts. Acta Physiol Scand. 175:271–277.

    Article  PubMed  Google Scholar 

  46. Marais E, Genade S, Strijdom H, Moolman JA, Lochner A. 2001. P38 MAPK activation triggers pharmacologically induced beta-adrenergic preconditioning, but not ischemic preconditioning. J Mol Cell Cardiol 33:2157–2177.

    Article  PubMed  CAS  Google Scholar 

  47. Takeishi Y, Huang Q, Wang T, Glassman M, Yoshizumi M, Baines CP, Lee JD, Kawakatsu H, Che W, Lerner-Marmorosh N, Zhang C, Yan C, Ohta S, Walsh RA, Berk BC, Abe J. 2001. Src family kinase and adenosine differentially regulate multiple MAP kinases in ischemic myocardium: modulation of MAP kinase activation by ischemic preconditioning. J Mol Cell Cardiol 33:1989–2005.

    Article  PubMed  CAS  Google Scholar 

  48. Fryer RM, Patel HH, Hsu AK, Gross GJ. 2001. Stress-activated protein kinase phosphorylation during cardioprotection in the ischemic myocardium. Am J Physiol 281:H1184–H1192.

    CAS  Google Scholar 

  49. Saurin AT, Martin JL, Heads RJ, Foley C, Mockridge JW, Wright MJ, Wang Y, Marber MS. 2000. The role of differential activation of p38 mitogen activated protein kinases in preconditioned ventricular myocytes. FASEB J 14:2237–2246.

    Article  PubMed  CAS  Google Scholar 

  50. Morishita R, Sugimoto T, Aoki M, Kida I, Tomita N, Moriguchi A, Maeda K, Sawa Y, Kaneda Y, Higaki J, Ogihara T. 1997. In vivo transfection of eis element “decoy” against nuclear factor-kB binding site prevents myocardial infarction. Nature Med 3:894–899.

    Article  PubMed  CAS  Google Scholar 

  51. Sawa Y, Morishita R, Suzuki K, Kagisaki K, Kaneda Y, Maeda K, Kadoba K, Matsuda H. 1997. A novel strategy for myocardial protection using in vivo transfection of cis element “decoy” against NFkB binding site. Circulation 96 (suppl. II), II-280–II-285.

    Google Scholar 

  52. Maczewski M, Beresewicz A. 1998. The role of adenosine and ATP-sensitive potassium channels in the protection afforded by ischemic preconditioning against the post-ischemic endothelial dysfunction in guinea-pig hearts. J Mol Cell Cardiol 30:1735–1747.

    Article  PubMed  CAS  Google Scholar 

  53. Merkus D. Stepp DW, Jones DW, Nishikawa Y, Chilian WM. 2000. Adenosine preconditions against endothelin-induced constriction of coronary arterioles. Am J Physiol 279:H2593–2597.

    CAS  Google Scholar 

  54. Giannella E, Mochmann HC, Levi R. 1997. Ischemic preconditioning prevents the impairment of hypoxic coronary vasodilatation caused by ischemia/reperfusion: role of adenosine A1/A3 and bradykinin B2 receptor activation. Circ Res 81:415–422.

    Article  PubMed  CAS  Google Scholar 

  55. Tokuno S, Chen F, Jiang J, Pernow J, Valen G. 2002. Effects of spontaneous or induced brain infarctions on vessel reactivity: The role of iNOS. Life Sciences, 71:679–692.

    Article  PubMed  CAS  Google Scholar 

  56. Laude K, Thuillez C, Richard V. 2001. Coronary endothelial dysfunction after ischemia and reperfusion: A new therapeutic target? Braz J Med Biol Res 34:1–7.

    Article  PubMed  CAS  Google Scholar 

  57. Laude K, Richard V, Henry JP, Lallemand F, Thuillez C. 2000. Evidence against a role of inducible nitric oxide synthase in the endothelial protective effects of delayed preconditioning. Br J Pharmacol 130:1547–1552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guro Valen MD, PhD. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Valen, G., Tähepôld, P., Starkopf, J., Ruusalepp, A., Vaage, J. (2003). Adaptation to Ischemia by in vivo Exposure to Hyperoxia—Signalling through Mitogen Activated Protein Kinases and Nuclear Factor Kappa B. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics