Skip to main content

Altered Expression of Conventional Calpains Influences Apoptosis

  • Chapter
Book cover Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

  • 129 Accesses

Summary

Calpains are non-lysosomal, cysteine proteases ubiquitously expressed in animal cells. Most cells also express an inhibitor protein, calpastatin, that is highly specific for calpains. Among many proposed functions, calpains are thought to participate in apoptosis signaling through various pathways. Most studies of calpain function in apoptosis have relied on methodologies that cannot separate the influence of the conventional calpains (μ- and m-calpains) from other calpain family members, or non-calpain proteases in some cases. The present investigation addresses this issue by unambiguously altering the abundance of conventional calpains in cultured cells, and determining the effect on various models of apoptosis. Overexpression of μ-calpain enhanced apoptosis of Chinese hamster ovary (CHO) cells in response to the calcium ionophore A23187, the sarcolemma Ca2+-pump inhibitor, thapsigargin, or serum deprivation. Overexpression of calpastatin had the opposite effect. Altered expression of calpain or calpastatin had no detectable influence on apoptosis caused by expo-sure to H2O2, ultraviolet light, or the protein kinase inhibitor, staurosporine. Increased expression of μ-calpain protected against TNF-alpha triggered apoptosis. These results demonstrate that calpain/calpastatin balance is important in some forms of apoptosis in CHO cells, but not in others. Moreover, in the TNF-alpha apoptosis pathway calpains had a protective effect, as previously proposed (Han, Y., et al., 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kang PM, Izumo S. 2000. Apoptosis and heart failure: A critical review of the literature. Circ Res 86:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  2. Elsasser A, Suzuki K, Schaper J. 2000. Unresolved issues regarding the role of apoptosis in the pathogenesis of ischemic injury and heart failure. J Mol Cell Cardiol 32:711–724.

    Article  PubMed  CAS  Google Scholar 

  3. Dispersyn GD, Borgers M. 2001. Apoptosis in the heart: about programmed cell death and survival. News Physiol Sci 16:41–47.

    PubMed  CAS  Google Scholar 

  4. Villa P, Kaufmann SH, Earnshaw WC. 1997. Caspases and caspase inhibitors. Trends Biochem Sci 22:388–393.

    Article  PubMed  CAS  Google Scholar 

  5. Colussi PA, Kumar S. 1999. Targeted disruption of caspase genes in mice: what they tell us about the functions of individual caspases in apoptosis. Immunol Cell Biol 77:58–63.

    Article  PubMed  CAS  Google Scholar 

  6. Squier MK, Miller AC, Malkinson AM, Cohen JJ. 1994. Calpain activation in apoptosis. J Cell Physiol 159:229–237.

    Article  PubMed  CAS  Google Scholar 

  7. Lu Q, Mellgren RL. 1996. Calpain inhibitors and serine protease inhibitors can produce apoptosis in HL-60 cells. Arch Biochem Biophys 334:175–181.

    Article  PubMed  CAS  Google Scholar 

  8. Nath R, Raser KJ, McGinnis K, Nadimpalli R, Stafford D, Wang KK. 1996. Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. Neuroreport 8:249–255.

    Article  PubMed  CAS  Google Scholar 

  9. Baghdiguian S, Martin M, Pdchard I, Pons F, Astier C, Bourg N, Hay RT, Chemaly R, Halaby G, Loiselet J, Anderson LV, Lopez de Munain A, Fardeau M, Mangeat P, Beckmann JS, Lefranc G. 1999. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A. Nat Med 5:503–511.

    Article  PubMed  CAS  Google Scholar 

  10. Wang KK. 2000. Calpain and caspase: can you tell the difference? Trends Neurosci 23:20–26.

    Article  PubMed  Google Scholar 

  11. Mellgren RL, Lu Q, Zhang W, Lakkis M, Shaw E, Mericle MT. 1996. Isolation of a Chinese hamster ovary cell clone possessing decreased mu-calpain content and a reduced proliferative growth rate. J Biol Chem 271:15568–15574.

    Article  PubMed  CAS  Google Scholar 

  12. Dourdin N, Bhatt AK, Dutt P, Greer PA, Arthur JS, Elce JS, Huttenlocher A. 2001. Reduced cell migration and disruption of the actin cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem 276:48382–48388.

    PubMed  CAS  Google Scholar 

  13. Elce JS, Davies PL, Hegadorn C, Maurice DH, Arthur JS. 1997. The effects of truncations of the small subunit on m-calpain activity and heterodimer formation. Biochem J 326:31–38.

    PubMed  CAS  Google Scholar 

  14. Dirks W, Wirth M, Hauser H. 1993. Dicistronic transcription units for gene expression in mammalian cells. Gene 128:247–249.

    Article  PubMed  CAS  Google Scholar 

  15. Mellgren RL, Repetti A, Muck TC, Easly J. 1992. Rabbit skeletal muscle calcium-dependent protease requiring millimolar CA2+. Purification, subunit structure, and Ca2+-dependent autoproteolysis. J Biol Chem 257:7203–7209.

    Google Scholar 

  16. Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63.

    Article  CAS  Google Scholar 

  17. Waterhouse NJ, Finucane DM, Green DR, Elce JS, Kumar S, Alnemri ES, Litwack G, Khanna K, Lavin MF,Watters DJ. 1998. Calpain activation is upstream of caspases in radiation-induced apoptosis. Cell Death Differ 5:1051–1061.

    Article  PubMed  CAS  Google Scholar 

  18. Han Y, Weinman S, Boldogh I, Walker RK, Brasier AR. 1999. Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation. J Biol Chem 274:787–794.

    Article  PubMed  CAS  Google Scholar 

  19. Sonenshein GE. 1997. Rel/NF-kappa B transcription factors and the control of apoptosis. Semin Cancer Biol 8:113–119.

    Article  PubMed  CAS  Google Scholar 

  20. Tamm I, Kikuchi T. 1990. Insulin-like growth factor-1 (IGF-1), insulin, and epidermal growth factor (EGF) are survival factors for density-inhibited, quiescent Balb/c-3T3 murine fibroblasts. J Cell Physiol 143:494–500.

    Article  PubMed  CAS  Google Scholar 

  21. Prisco M, Romano G, Peruzzi F,Valentinis B, Baserga R. 1999. Insulin and IGF-I receptors signaling in protection from apoptosis. Horm Metab Res 31:80–89.

    Article  PubMed  CAS  Google Scholar 

  22. Roberts-Lewis JM, Marcy VR, Zhao Y, Vaught JL, Siman R, Lewis ME. 1993. Aurintricarboxylic acid protects hippocampal neurons from NMDA- and ischemia-induced toxicity in vivo. J Neurochem 61:378–381.

    Article  PubMed  CAS  Google Scholar 

  23. Sarin A, Adams DH, Henkart PA. 1993. Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 178:1693–1700.

    Article  PubMed  CAS  Google Scholar 

  24. Li Q, Li B, Wang X, Leri A, Jana KP, Liu Y, Kajstura J, Baserga R, Anversa P. 1997. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 100:1991–1999.

    Article  PubMed  CAS  Google Scholar 

  25. Lee WL, Chen JW, Ting CT, Ishiwata T, Lin SJ, Korc M, Wang PH. 1999. Insulin-like growth factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dilated cardiomyopathy. Endocrinology 140:4831–4840.

    Article  PubMed  CAS  Google Scholar 

  26. Lu T, Xu Y, Mericle MT, Mellgren RL. 2002. Participation of the conventional calpains in apoptosis. Biochim Biophys Acta, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald L. Mellgren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mellgren, R.L., Lu, T., Xu, Y. (2003). Altered Expression of Conventional Calpains Influences Apoptosis. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics