Skip to main content

The Application of Genetic Mouse Models to Elucidate a Role for Fibroblast Growth Factor-2 in the Mammalian Cardiovascular System

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Summary

Fibroblast growth factor (FGF)-2 is a polypeptide growth factor which plays multiple roles in the mammalian cardiovascular system, having direct proliferative, migratory and differentiation effects on cardiac myocytes, fibroblasts, smooth muscle and endothelial cells. To date, a number of genetic approaches in mice have been used to further our understanding of these roles and effects. The three main approaches used so far have been overexpression, gene disruption (“knockout”), and the use of a reporter gene for the study of transcriptional regulation in vivo. The application of genetic models offers the advantage of endogenous production, depletion or regulation as opposed to exogenously added growth factor or regulation studied ex vivo. The variety of approaches available has resulted in the publication of two overexpression models, four separate “knockout” models and one reporter gene system in transgenic mice. These models have been summarized in this review and will be discussed collectively in the context of the many roles for FGF-2 in the cardiovascular system, including development, cardioprotection, angiogenesis, blood pressure regulation, and hypertrophy. The reporter gene system will be highlighted in terms of the study of gene regulation in vivo. Finally, various means for fine-tuning transgenic systems will be considered with respect to the ability to control endogenous FGF-2 production more precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sugi Y, Lough J. 1995. Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis in vitro. Dev Biol 168:567–574.

    Article  PubMed  CAS  Google Scholar 

  2. Markwald R, Eisenberg C, Eisenberg L, Trusk T, Sugi Y. 1996. Epithelial-mesenchymal transformations in early avian heart development. Acta Anat (Basel) 156:173–186.

    Article  PubMed  CAS  Google Scholar 

  3. Grothe C, Wewetzer K. 1996. Fibroblast growth factor and its implications for developing and regenerating neurons. Int J Dev Biol 40:403–410.

    PubMed  CAS  Google Scholar 

  4. Miao JY, Araki S, Kaji K, Hayashi H. 1997. Integrin beta-4 is involved in apoptotic signal transduction in endothelial cells. Biochem Biophys Res Comm 233:182–186.

    Article  PubMed  CAS  Google Scholar 

  5. Fox JC, Shanely JR. 1996. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem 271:12578–12584.

    Article  PubMed  CAS  Google Scholar 

  6. Poole TJ, Finkelstein EB, Cox CM. 2001. The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220:1–17.

    Article  PubMed  CAS  Google Scholar 

  7. Bryant SR, Bjerke RJ, Erichsen DA, Rege A, Lindner V. 1999. Vascular remodeling in response to altered blood flow is mediated by fibroblast growth factor-2. Circ Res 84:323–328.

    Article  PubMed  CAS  Google Scholar 

  8. Isner JM. 2002. Myocardial gene therapy. Nature 415:234–238.

    Article  PubMed  CAS  Google Scholar 

  9. Cuevas P, Carceller F, Ortega S, Zazo M, Nietol I, Gimenez-Gallego G. 1991. Hypotensive activity of fibroblast growth factor. Science 254:1208–1210.

    Article  PubMed  CAS  Google Scholar 

  10. Padua RR, Merle PL, Doble BW,Yu CH, Zaradka P, Pierce GN, Panagia V, Kardami E. 1998. FGF-2-induced negative inotropism and cardioprotection are inhibited by chelerythrine: Involvement of sarcolemmal calcium-independent protein kinase C. J Mol Cell Cardiol 30:2695–2709.

    Article  PubMed  CAS  Google Scholar 

  11. Kardami E, Padua RR, Doble BW, Sheikh F, Cattini PA. 2002. Signaling cascades mediating the pleiotropic actions of FGF-2 on cardiac myocytes. In: Fibroblast Growth Factor in the Cardiovascular System. Ed. P Cuevas, in press.

    Google Scholar 

  12. Tappia PS, Padua RR, Panagia V, Kardami E. 1999. Fibroblast growth factor-2 stimulates phosphor-lipase Cβ in adult cardiomyocytes. Biochem Cell Biol 77:569–575.

    Article  PubMed  CAS  Google Scholar 

  13. Doble BW, Chen Y, Bosc DG, Litchfield DW, Kardami E. 1996. Fibroblast growth factor-2 decreases metabolic coupling and stimulates phosphorylation as well as masking of connexin-43 epitopes in cardiac myocytes. Circ Res 79:647–658.

    Article  PubMed  CAS  Google Scholar 

  14. Pasumarthi KBS, Doble BW, Kardami E, Cattini PA. 1994. Over-expression of CUG-or AUG-initiated forms of basic fibroblast growth factor in cardiac myocytes results in similar effects on mitosis and protein synthesis but distinct nuclear morphologies. J Mol Cell Cardiol 26:1045–1060.

    Article  PubMed  CAS  Google Scholar 

  15. Pasumarthi KBS, Kardami E, Cattini PA. 1996. High and low molecular weight fibroblast growth factor-2 increase proliferation of neonatal rat cardiac myocytes but have differential effects on bin-ucleation and nuclear morphology. Evidence for both paracrine and intracrine actions of fibroblast growth factor-2. Circ Res 78:126–136.

    Article  PubMed  CAS  Google Scholar 

  16. Sun G, Doble BW, Sun JM, Fandrich RR, Florkiewicz R, Kirshenbaum L, Davie JR, Cattini PA, Kardami E. 2001. CUG-initiated FGF-2 induces chromatin compaction in cultured cardiac myocytes and in vitro. J Cell Physiol 186:457–467.

    Article  PubMed  CAS  Google Scholar 

  17. Hirst C, Herlyn M, Cattini PA, Kardami E. 2002. High levels of CUG-initiated FGF-2 expression cause chromatin compaction, decreased cardiomyocyte mitosis, and cell death. Mol Cell Biochem in press.

    Google Scholar 

  18. Coffin JD, Florkiewicz RZ, Neumann J, Mort-Hopkins T, Dorn GW II, Lightfoot P, German R, Howies PN, Kier A, O’Toole BA, Sasse J, Gonzalez AM, Baird A, Doetschman T 1995. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice. Mol Biol Cell 6:1861–1873.

    PubMed  Google Scholar 

  19. Sheikh F, Sontag DP, Fandrich RR, Kardami E, Cattini PA. 2001. Overexpression of FGF-2 increases cardiac myocyte viability after injury in isolated mouse hearts. Am J Physiol Heart Circ Physiol 280:H1039–H1050.

    PubMed  CAS  Google Scholar 

  20. Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG, Luo W, Boivin GP, Duffy JJ, Pawlowski SA, Doetschman T. 1998. Fibroblast growth factor 2 control of vascular tone. Nat Med 4:201–207.

    Article  PubMed  CAS  Google Scholar 

  21. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C. 1998. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA 95:5672–5677.

    Article  PubMed  CAS  Google Scholar 

  22. Dono R, Texido G, Dussel R, Ehmke H, Zeller R. 1998. Impaired cerebral cortex development and blood pressure regulation in FGF-2 deficient mice. EMBO J 17:4213–4225.

    Article  PubMed  CAS  Google Scholar 

  23. Pellieux C, Foletti A, Peduto G, Aubert JF, Nussberger J, Beerman F, Brunner HR, Pedrazzini T. 2001. Dilated cardiomyopathy and impaired cardiac hypertrophic response to angiotensin II in mice lacking FGF-2. J Clin Invest 108:1843–1851.

    PubMed  CAS  Google Scholar 

  24. Detillieux KA, Meij JTA, Kardami E, Cattini PA. 1999. α1-Adrenergic stimulation of FGF-2 promoter in cardiac myocytes and in adult transgenic mouse hearts. Am J Physiol 276 (Heart Circ Physiol 45):H826–H833.

    PubMed  CAS  Google Scholar 

  25. Conti FG, Powell R, Pozzi L, Zezze G, Faraggiana T, Gannon F, Fabbrini A. 1995. A novel line of transgenic mice (RSV/LTR-bGH) expressing growth hormone in cardiac and striated muscle. Growth Regul 5:101–108.

    PubMed  CAS  Google Scholar 

  26. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL. 1990. The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 10:3709–3716.

    PubMed  CAS  Google Scholar 

  27. Watkins BP, Bolender DL, Lough J, Kolesari GL. 1998. Teratogenic effects of implanting fibroblast growth factor-2-soaked beads in the cardiac region on the stage 24 chick embryo. Teratology 57:140–145.

    Article  PubMed  CAS  Google Scholar 

  28. Franciosi JP, Bolender DL, Lough J, Kolesari GL. 2000. FGF-2-induced imbalance in early embryonic heart cell proliferation: A potential cause of late cardiovascular anomalies. Teratology 62:189–194.

    Article  PubMed  CAS  Google Scholar 

  29. Amaya E, Musci TJ, Kirschner MW. 1991. Expression of a dominant negative mutant of the FGF receptor disrupts mesoderm formation in Xenopus embryos. Cell 66:257–270.

    Article  PubMed  CAS  Google Scholar 

  30. Zhu X, Sasse J, Lough J. 1999. Evidence the FGF receptor signaling is necessary for endoderm-regulated development of precardiac mesoderm. Mech Ageing Dev 108:77–85.

    Article  PubMed  CAS  Google Scholar 

  31. Sugi Y, Sasse J, Lough J. 1993. Inhibition of precardiac mesoderm cell proliferation by antisense oligodeoxynucleotide complementary to fibroblast growth factor-2 (FGF-2). Dev Biol 157:28–37.

    Article  PubMed  CAS  Google Scholar 

  32. Leconte I, Fox JC, Baldwin HS, Buck CA, Swain JL. 1998. Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn 213: 421–430.

    Article  PubMed  CAS  Google Scholar 

  33. Padua RR, Sethi R, Dhalla NS, Kardami E. 1995. Basic fibroblast growth factor is cardioprotective in ischemia-reperfusion injury. Mol Cell Biochem 143:129–135.

    Article  PubMed  CAS  Google Scholar 

  34. Cuevas P, Carcellar F, Lozano PJVL, Crespo A, Zazo M, Gimenez-Gallego G. 1997. Protection of rat myocardium by mitogenic and non-mitogenic fibroblast growth factor during post-ischemic reperfusion. Growth Factors 15:29–40.

    Article  PubMed  CAS  Google Scholar 

  35. Harada K, Grossman W, Friedman M, Edelman ER, Prasad PV, Keighly CS, Manning WL, Sellke FW, Simons M. 1994. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest 94:623–630.

    Article  PubMed  CAS  Google Scholar 

  36. Lazarous DF, Scheinowitz M, Shou M, Hodge E, Rajanayaram S, Hunsberger S, Robison WG Jr, Stiber JA, Correa R, Epstein SE, Unger EE 1995. Effects of chronic systemic administration of basic fibroblast growth factor on collateral development in the canine heart. Circulation 91:145–153.

    Article  PubMed  CAS  Google Scholar 

  37. Yanagisawa-Miwa A, Uchida Y, Nakamura F, Tomaru T, Kido H, Kamijo T, Sugimoto T, Kaji K, Utsuyama M, Kurashima C, Ito H. 1992. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science 257:1401–1403.

    Article  PubMed  CAS  Google Scholar 

  38. Epstein SE, Fuchs S, Zhou YF, Baffour R, Kornowski R. 2001. Therapeutic interventions for enhancing collateral development by administration of growth factors: basic principles, early results and potential hazards. Cardiovasc Res 49:532–542.

    Article  PubMed  CAS  Google Scholar 

  39. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA. 2002. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Circulation 105:788–793.

    Article  PubMed  CAS  Google Scholar 

  40. Kardami E, Padua RR, Pasumarthi KBS, Liu L, Doble BW, Davey SE, Cattini PA. 1993. Expression, localization, and effects of basic fibroblast growth factor on cardiac myocytes. In: Growth Factors and the Cardiovascular System. Ed. P Cummins, 55–76. Kluwer Academic Publishers.

    Chapter  Google Scholar 

  41. Meij JTA, Sheikh F, Jimenez SK, Nickerson PW, Kardami E, Cattini PA. 2002. Exacerbation of myocardial injury in transgenic mice overexpressing FGF-2 is T-cell dependent. Am J Physiol Heart Circ Physiol 282:H547–H555.

    PubMed  CAS  Google Scholar 

  42. Davis MG, Zhou M, Safdar A, Coffin JD, Doetschman T, Dorn GW II. 1997. Intracrine and autocrine effects of basic fibroblast growth factor in vascular smooth muscle cells. J Mol Cell Cardiol 29:1061–1072.

    Article  PubMed  CAS  Google Scholar 

  43. Fulgham DL, Widhalm SR, Martin S, Coffin JD. 1999. FGF-2-dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium 6:185–195.

    Article  PubMed  CAS  Google Scholar 

  44. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. 2000. Compensation by fibroblast growth factor 1 does not account for mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol 20:2260–2268.

    Article  PubMed  CAS  Google Scholar 

  45. Dono R, Faulhaber J, Galli A, Zuniga A,Volk T,Texido G, Zeller R, Ehmke H. 2002. FGF-2 signaling is required for the development of neuronal circuits regulating blood pressure. Circ Res 90:e5–e10.

    Article  PubMed  CAS  Google Scholar 

  46. Murat A, Pellieux C, Brunner HR, Pedrazzini T. 2000. Calcineurin blockade prevents cardiac mitogen-activated protein kinase activation and hypertrophy in renovascular hypertension. J Biol Chem 275:40867–40873.

    Article  PubMed  CAS  Google Scholar 

  47. Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S, Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, Komuro I. 2001. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 104:97–101.

    Article  PubMed  CAS  Google Scholar 

  48. Schultz JJ, Witt SA, Niemann ML, Reiser PJ, Engle SJ, Zhou SJ, Zhou M, Pawlowski SA, Lorenz JN, Kimball TR, Doetschman T. 1999. Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest 104:709–719.

    Article  PubMed  CAS  Google Scholar 

  49. Kudoh S, Komuro I, Hiroi Y, Zou Y, Harada K, Sugaya T, Takekoshi N, Murakami K, Kadowaki T, Yazaki Y. 1998. Mechanical stretch induces hypertrophic responses in cardiac myocytes of angiotensin II type 1a receptor knockout mice. J Biol Chem 273:24037–24043.

    Article  PubMed  CAS  Google Scholar 

  50. Harada K, Komuro I, Zou Y, Kudoh S, Kijima K, Matsubara H, Sugaya T, Murakami K, Yazaki Y. 1998. Acute pressure overload could induce hypertrophic responses in the heart of angiotensin II type la knockout mice. Circ Res 82:779–785.

    Article  PubMed  CAS  Google Scholar 

  51. Cattini PA, Jin Y, Sheikh F. 1998. Detection of 28S RNA with the FGF-2 cDNA at high stringency through related G/C-rich sequences. Mol Cell Biochem 189:33–39.

    Article  PubMed  CAS  Google Scholar 

  52. Pasumarthi KBS, Jin Y, Cattini PA. 1998. Cloning of the rat fibroblast growth factor-2 promoter region and its response to mitogenic stimuli in glioma C6 cells. J Neurochem 68:898–908.

    Article  Google Scholar 

  53. Jin Y, Sheikh F, Detillieux KA, Cattini PA. 2000. Role for early growth response-1 protein in α1-adrenergic stimulation of fibroblast growth factor-2 promoter activity in cardiac myocytes. Mol Pharmacol 57:984–990.

    PubMed  CAS  Google Scholar 

  54. Fisher TA, Ungureanu-Longrois D, Singh K, de Zengotita J, deUgarte D, Alali A, Gadbut AP, Lee MA, Balhgand JL, Kifor I, Smith TW, Kelly RA. 1997. Regulation of bFGF expression and ANG II secretion in cardiac myocytes and microvascular endothelial cells. Am J Physiol 272 (Heart Circ Physiol 41):H958–H968.

    Google Scholar 

  55. Weich HA, Iberg N, Klagsbrun M, Folkman J. 1991. Transcriptional regulation of basic fibroblast growth factor gene expression in capillary endothelial cells. J Cell Biochem 47:158–164.

    Article  PubMed  CAS  Google Scholar 

  56. Alberts GF, Hsu DKW, Peifley KA, Winkles JA. 1994. Differential regulation of acidic and basic fibroblast growth factor gene expression in fibroblast growth factor-treated rat aortic smooth muscle cells. Circ Res 75:261–267.

    Article  PubMed  CAS  Google Scholar 

  57. Clarke MS, Caldwell RW, Chiao H, Miyake K, McNeil PL. 1995. Contraction-induced cell wounding and release of fibroblast growth factor in the heart. Circ Res 76:927–934.

    Article  PubMed  CAS  Google Scholar 

  58. Kaye D, Pimental D, Prasad S, Maki T, Berger HJ, McNeil PL, Smith TW, Kelly RA. 1996. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro. J Clin Invest 97:281–291.

    Article  PubMed  CAS  Google Scholar 

  59. Wang D, Mayo MW, Baldwin AS Jr. 1997. Basic fibroblast growth factor transcriptional autoregulation requires EGR-1. Oncogene 14:2291–2299.

    Article  PubMed  CAS  Google Scholar 

  60. Rossant J, McMahon A. 1999. “Cre”-ating mouse mutants—a meeting review on conditional mouse genetics. Genes Dev 13:142–145.

    Article  PubMed  CAS  Google Scholar 

  61. Gaussin V, Van De Putte T, Mishina Y, Hanks MC, Zwijsen A, Huylebroeck D, Behringer RR, Schneider MD. 2002. Endocardial cushion and myocardial defects after cardiac myocyte-specific conditional deletion of the bone morphogenetic protein receptor ALK3. Proc Natl Acad Sci USA 99:2878–2883

    Article  PubMed  CAS  Google Scholar 

  62. Fishman GI. 1998. Timing is everything in life: Conditional transgene expression in the cardiovascular system. Circ Res 82:837–844.

    Article  PubMed  CAS  Google Scholar 

  63. Zhu Z, Ma B, Homer RJ, Zheng T, Elias JA. 2001. Use of tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J Biol Chem 276:25222–25229.

    Article  PubMed  CAS  Google Scholar 

  64. Sohal DS, Ngheim M, Crackower MA, Witt SA, Kimball TR, Tymitz KM, Penninger JM, Molkentin JD. 2001. Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. Circ Res 89:20–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter A. Cattini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Detillieux, K.A., Jimenez, S.K., Sontag, D.P., Kardami, E., Nickerson, P.W., Cattini, P.A. (2003). The Application of Genetic Mouse Models to Elucidate a Role for Fibroblast Growth Factor-2 in the Mammalian Cardiovascular System. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics