Skip to main content

JAK/Stat Signaling in Cardiac Diseases

  • Chapter
  • 129 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

Summary

The molecular mechanisms that initiate and propagate myocardial diseases are known to involve participation of distinct signaling pathways. The onset of myocardial hypertrophy and ischemia followed by reperfusion, hypoxia/reoxygenation and oxygen radicals is accompanied by an upregulated level of the heart tissue-localized renin-angiotensin system (RAS). The major signaling events attributed to the RAS are the G-protein receptor signaling and those that are associated with the redox regulated system. The cross-talk likely to occur between these pathways may reach a putative focal point needed to program the execution of the disease related transcriptional events. In this context, the JAK2/Stat proteins play a pivotal role. Our studies support the notion that signals induced by diverse stimuli are somehow linked to the activated Janus Kinase-2 (JAK2) which appears to be the determining factor in triggering the execution of the disease related genetic program in cardiomyocytes. If this signaling pathway in cardiomyocyte plays a role in initiation and progression of cardiac diseases, specific inhibitors of the components of the pathway might be important as therapeutic agents. Selective inhibition of JAK2 by AG490 caused a reduction of cardiac hypertrophy, ischemic injury and cell death and a simultaneous increase in cardiac function. These observations thus provide new conceptual paradigms in heart disease research making it possible to develop novel cardioprotective agents mechanistically based on modulation in signaling events.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shaub MHC, Hefti MA, Harder BA, Eppenberger HM. 1997. Various hypertrophic stimuli I induce distinct phenotypes in cardiomyocytes. J Mol Med 75:901–920.

    Article  Google Scholar 

  2. Ruwhof C, Laarse A. 2000. Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Card Res 47:23–37.

    Article  CAS  Google Scholar 

  3. Sugden PH, Signaling in myocardial hypertrophy-Life after Calcineurin? 1999. Circ Res 84:633–646.

    Article  PubMed  CAS  Google Scholar 

  4. Mascareno E, Siddiqui MAQ. 2000. The role of Jak/STAT signaling in heart tissue renin-angiotensin system. Mol Cell Biochem 212:171–175.

    Article  PubMed  CAS  Google Scholar 

  5. Chien KR. 2000. Meeting Koch’s postulates for calcium signaling in cardiac hypertrophy. J Clin Invest 105:1339–1342.

    Article  PubMed  CAS  Google Scholar 

  6. Molkentin J, Dorn II G. 2001. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu Rev Physiol 63:391–426.

    Article  PubMed  CAS  Google Scholar 

  7. Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA. 2000. Gbetagamma-dependent phos-phoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 275(7):4693–4698.

    Article  PubMed  CAS  Google Scholar 

  8. Schluter KD, Goldberg Y, Taimor G, Schafter M, Piper HM. 1998. Role of phosphatidylinositol 3-kinase activation in the hypertrophic growth of adult ventricular cardiomyocytes. Cardiovasc Res 40(1):174–181.

    Article  PubMed  CAS  Google Scholar 

  9. Pan J, Fukuda K, Saito M, Matsuzaki J, Kodama H, Sano M, Takahashi T, Kato T, Ogawa S. 1999. Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84:1127–1136.

    Article  PubMed  CAS  Google Scholar 

  10. Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR. 1997. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 272: 5783–5791.

    Article  PubMed  CAS  Google Scholar 

  11. Hirota H, Yoshida K, Kishimoto T, Taga T. 1995. Continuous activation of gp130, a signal-transducing receptor component for interleukin 6-related cytokines, causes myocardial hypertrophy in mice. Proc Nad Acad Sei USA 92:4862–4866.

    Article  CAS  Google Scholar 

  12. Murata M, Fukuda K, Ishida H, Miyoshi S, Koura T, Kodama H, Nakazawa HK, Ogawa S. 1999. Leukemia inhibitory factor, a potent cardiac hypertrophic cytokine, enhances L-type Ca2+ current and [Ca2+]i transient in cardiomyocytes. J Mol Cell Cardiol 31:237–245.

    Article  PubMed  CAS  Google Scholar 

  13. Mascareno E, Dhar M, Siddiqui MAQ. 1998. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: a cellular signal for hypertrophy in cardiac muscle. Proc Natl Acad Sei USA 95:5590–5594.

    Article  CAS  Google Scholar 

  14. Raizada M, Phillips M, Summers C. 1993. Cellular and Molecular Biology of the Renin Angiotensin System, CRC Press, Boca Raton, FL.

    Google Scholar 

  15. Braunwald E. 1992. E. Braunwald, Editor, Heart Disease—A Textbook of Cardiovascular Medicine, Volume 1, 4th Edition, WB Saunders Co., Phila, PA USA.

    Google Scholar 

  16. Lee AA, Dillmann WH, McCulloch AD, Villareal EJ. 1995. Angiotensin II stimulates the autocrine production of transforming growth factor—beta 1 in adult rat cardiofibroblast. J Mol Cardiol 27:2347–2357.

    Article  CAS  Google Scholar 

  17. Marrero MB, Schieffer B, Paxton WG, Duff JL, Berk BC, Bernstein KE. 1995. The role of tyrosine phosphorylation in angiotensin II—mediated intracellur signaling. Cardiovas Res 30:530–536.

    CAS  Google Scholar 

  18. Ihle JN. 1996. Stats signal transducers and activators of transcription. Cell 84:331–334.

    Article  PubMed  CAS  Google Scholar 

  19. Horvath CM, Darnell JE. 1997. The state of the STATS: Recent developments in the study of signal transduction in the nucleu. Curr Opin Cell Biol 9:233–239.

    Article  PubMed  CAS  Google Scholar 

  20. Horvath CM, Wen Z, Darnell JE Jr. 1995. A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain Genes & Development. 9:984–994.

    CAS  Google Scholar 

  21. Hemmann U, Gerhartz C, Heesel B, Sasse J, Kurapkat G, Grotzinger J, Wollmer A, Zhong Z, Darnell JE Jr. 1996. Graeve L. Heinrich PC. Horn F. Differential activation of acute phase response factor/Stat3 and Statl via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J of Biol Chem 271: 12999–13007.

    Article  CAS  Google Scholar 

  22. Karin M. 1994. Signal transduction from the cell surface to the nucleus through the phosphorylation of transcription factors. Curr Op in Cell Bio 6:415–424.

    Article  CAS  Google Scholar 

  23. Gotoh A, Takahira H, Mantel C, Litz-Jackson S, Boswell HS, Broxmeyer HE. 1996. Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines. Blood 88(1):138–145.

    PubMed  CAS  Google Scholar 

  24. David M, Petricoin E 3rd, Benjamin C, Pine R, Weber MJ, Larner AC. 1995. Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science 269:1721–1723.

    Article  PubMed  CAS  Google Scholar 

  25. Seidel HM, Milocco LH, Lamb P, Darnell JE, Stein RB, Rosen J. 1995. Spacing of paHndromic half sites as a determinant of selective STAT (signal transducers and activators of transcription) DNA binding and transcriptional activity. Proc Natl Acad Sei USA 92:3041–3045.

    Article  CAS  Google Scholar 

  26. Darnell JE Jr, Kerr IM, Stark GM. 1994. Jak/STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421.

    Article  PubMed  CAS  Google Scholar 

  27. Fukuzawa J, Booz GW, Hunt RA, Shimizu N, Karoor V, Baker KM, Dostal DE. 2000. Cardiotrophin-1 increases angiotensinogen mRNA in rat cardiac myocytes through STAT3: an autocrine loop for hypertrophy. Hypertension 35(6):1191–1196.

    Article  PubMed  CAS  Google Scholar 

  28. Paz Y, Gurevitch J, Frolkis I, et al. 1998. Effects of an angiotensin II antagonist on ischemic and non-ischemic isolated rat heart. Thorac Surg 65:474–479.

    Article  CAS  Google Scholar 

  29. Mascareno E, El-Shafie M, Maulik N, Sito M, Guo Y, Das DK, Siddiqui MAQ. 2001. JAK/Stat signaling is associated with cardiac dysfunction during ischemia and reperfusion. Circulation 104: 325–329.

    Article  PubMed  CAS  Google Scholar 

  30. Kerr JFR, Wyllie AH, Currie AR. 1972. Apoptosis: A basic biological phenomenon with wide ranging implication in tissue connectics. British J Cancer 26:239–257.

    Article  CAS  Google Scholar 

  31. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HR. 1993. The C. elegans cell death gene cde-3 encodes a protein similar to mammalian interleukin-1 beta converting enzyme. Cell 75:641–652.

    Article  PubMed  CAS  Google Scholar 

  32. Yaoita H, Ogawa K, Maelare K, Maruyama Y. 1998. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281.

    Article  PubMed  CAS  Google Scholar 

  33. Ma XL, Kumar S, Gao F, et al. 1999. Inhibition of p38 mitogen activated protein kinase decreases cardiomyocytes apoptosis and improves cardiac function after myocardial ischemia and reperfusion. Circulation 99:1685-1691.

    Article  PubMed  CAS  Google Scholar 

  34. Wang Y, Huang S, Sah VP, et al. 1998. Cardiac muscle cell hypertrophy in apoptosis induced by distinct members of the p38 mitogen activated protein kinase family. J Biol Chem 273:2161–2168.

    Article  PubMed  CAS  Google Scholar 

  35. Piezetralski P, Reiss K, Cheng W, Sirelli C, Kajstura J, Nitahara JA, Rizk M, Capagrossi MC, Anversa P. 1997. Exp Cell Res 234:57–65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Q. Siddiqui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Siddiqui, M.A.Q., Mascareno, E. (2003). JAK/Stat Signaling in Cardiac Diseases. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics