Skip to main content

Role of Renin-Angiotensin System in Phospholipase C-Mediated Signaling in Congestive Heart Failure

  • Chapter
Book cover Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

  • 129 Accesses

Summary

The molecular events underlying the cardiac contractile dysfunction in congestive heart failure are not fully understood. Although different drugs such as angiotensin converting enzyme inhibitors and angiotensin receptor antagonist have been shown to improve cardiac function, the mechanisms of these agents in the failing heart remain largely unexplored. Since phospholipase C (PLC) is known to generate signaling molecules which are critical in increasing contractile force development, it is likely that changes in PLC may be responsible in altering cardiac contractile force in congestive heart failure. This article reviews the role of the renin angiotensin system in PLC signal transduction mechanisms as well as discussion of the potential of such signaling events as additional targets for the action of angiotensin converting enzyme inhibitors and angiotensin receptor antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dhalla NS, Afzal N, Beamish RE, Naimark B, Takeda N, Nagano M. 1993. Pathophysiology of cardiac dysfunction in congestive heart failure. Can J Cardiol 9:873–887.

    PubMed  CAS  Google Scholar 

  2. Baig MK, Mahon N, McKenna WJ, Caforio AL, Bonow RO, Francis GS, Gheorghiade M. 1998. The pathophysiology of advanced heart failure. Am Heart J 135:S216–S230.

    Article  PubMed  CAS  Google Scholar 

  3. Piano MR, Bondmass M, Schwartz DW. 1998. The molecular and cellular pathophysiology of heart failure. Heart Lung 27:3–19.

    Article  PubMed  CAS  Google Scholar 

  4. Weber KT, Sun Y, Guarda E. 1994. Structural remodeling in hypertensive heart disease and the role of hormones. Hypertension 23:869–867.

    Article  PubMed  CAS  Google Scholar 

  5. Serneri GG, Boddi M, Cecioni I, Vanni S, Coppo M, Papa ML, Bandinelli B, Bertoolozzi I, Polidori G, Toscano T, Maccherini M, Modesesti PA. 2001. Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res 88:861–863.

    Article  Google Scholar 

  6. Barlucchi L, Leri A, Dostal DE, Fiordaliso F,Tada H, Hintze TH, Kajstura J, Nadal-Ginard B, Anversa P. 2001. Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 88:298–304.

    Article  PubMed  CAS  Google Scholar 

  7. Dhalla NS, Shao Q, Panagia V. 1998. Remodeling of cardiac membranes during the development of congestive heart failure. Heart Failure Reviews 2:261–272.

    Article  CAS  Google Scholar 

  8. Bristow MR. 1997. Mechanism of action of beta-blocking agents in heart failure. Am J Cardiol 80:26L–40L.

    Article  PubMed  CAS  Google Scholar 

  9. Hasenfuss G. 1998. Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37:279–89.

    Article  PubMed  CAS  Google Scholar 

  10. deTombe PP. 1998. Altered contractile function in heart failure. Cardiovasc Res 37:367–380.

    Article  CAS  Google Scholar 

  11. Gomez AM, Valdivia HH, Cheng H, Lederer MR, Santana LF, Cannell MB, McCune SA, Altschuld RA, Lederer WJ. 1997. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science 276:800–806.

    Article  PubMed  CAS  Google Scholar 

  12. Hanahan DJ, Nelson DR. 1984. Phospholipids as dynamic participants in biological processes. J Lipid Res 25:1528–1535.

    PubMed  CAS  Google Scholar 

  13. Tappia PS, Liu SY, Shatadal S, Takeda N, Dhalla NS, Panagia V. 1999. Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. Am J Physiol 277:H40–H49.

    PubMed  CAS  Google Scholar 

  14. Ziegelhoffer A, Tappia PS, Mesaeli N, Sahi N, Dhalla NS, Panagia V. 2001. Low level of sarcolemmal phosphatidylinositol 4,5-bisphosphate in cardiomyopathic hamster (UM-X7.1) heart. Cardiovasc Res 49:118–126.

    Article  PubMed  CAS  Google Scholar 

  15. Huang CL, Feng S, Hilgemann DS. 1998. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391:803–806.

    Article  PubMed  CAS  Google Scholar 

  16. Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE. 2000. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+ -current desensitization. Nat Cell Biol 2:507–514.

    Article  PubMed  CAS  Google Scholar 

  17. Hilgemann DW, Ball R. 1996. Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959.

    Article  PubMed  CAS  Google Scholar 

  18. Caroni P, Zurlini M, Clark A. 1982. The calcium-pumping ATPase of heart sarcolemma. Ann NY Acad Sci 402:402–421.

    Article  PubMed  CAS  Google Scholar 

  19. He Z, Feng S, Tong Q, Hilgemann DW, Philipson KD. 2000. Interaction of PIP(2) with the XIP region of the cardiac Na/Ca exchanger. Am J Physiol 278:C661–C666.

    CAS  Google Scholar 

  20. Asteggiano C, Berberian C, Beauge L. 2001. Phosphatidyl inositol-4,5-bisphosphate bound to bovine cardiac Na+/Ca2+ exchanger displays a MgATP regulation similar to that of the exchange fluxes. Eur J Biochem 268:437–442.

    Article  PubMed  CAS  Google Scholar 

  21. Ju H, Scammel-LaFleur T, Dixon IMC. 1996. Altered mRNA abundance of calcium transport genes in cardiac myocytes induced by angiotensin II. J Mol Cell Cardiol 28:1119–1128.

    Article  PubMed  CAS  Google Scholar 

  22. Dhalla NS, Dixon IM, Rupp H, Barwinsky J. 1991. Experimental congestive heart failure due to myocardial infarction: sarcolemmal receptors and cation transporters. Basic Res Cardiol 86 (Suppl. 3):13–23.

    PubMed  Google Scholar 

  23. Cheng TO. 1990. Cardiac failure in coronary heart disease. Am Heart J 120:396–412.

    Article  PubMed  CAS  Google Scholar 

  24. Lerman RH, Asptein CA, Kagan HM, Osmers EL, Chichester CO, Vogel WM, Connelly CM, Steffee WP. 1983. Myocardial healing and repair after experimental infarction in the rabbit. Circ Res 53:378–388.

    Article  PubMed  CAS  Google Scholar 

  25. Cox MM, Berman I, Myerburg RJ, Smets MJ, Kozlovskis PL. 1991. Morphometric mapping of regional myocyte diameters after healing of myocardial infarction in cats. J Mol Cell Cardiol 23:127–135.

    Article  PubMed  CAS  Google Scholar 

  26. Vanoli E, De Ferrari GM, Stramba-Badiale M, Hull SS Jr, Foreman RD, Schwartz PJ. 1991. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction. Circ Res 68:1471–1481.

    Article  PubMed  CAS  Google Scholar 

  27. Sabbah HN, Kono T, Stein PD, Mancini GB, Goldstein S. 1992. Left ventricular shape changes during the course of evolving heart failure. Am J Physiol 263:H266–H270.

    PubMed  CAS  Google Scholar 

  28. McDonald KM, Francis GS, Carlyle PF, Hauer K, Matthews J, Hunter DW, Cohn JN. 1992. Hemodynamic, left ventricular structural and hormonal changes after discrete myocardial damage in the dog. J Am Coll Cardiol 19:460–467.

    Article  PubMed  CAS  Google Scholar 

  29. Jugdutt BI, Schwarz-Michorowski BL, Khan MI. 1992. Effect of long-term Captopril therapy on left ventricular remodeling and function during healing of canine myocardial infarction. J Am Coll Cardiol 19:713–721.

    Article  PubMed  CAS  Google Scholar 

  30. Connelly CM, Ngoy S, Schoen FJ, Apstein CS. 1992. Biomechanical properties of reperfused transmural myocardial infarcts in rabbits during the first week after infarction. Implications for left ventricular rupture. Circ Res 71:401–413.

    Article  PubMed  CAS  Google Scholar 

  31. Knowlton AA, Connelly CM, Romo GM, Mamuya W, Apstein CS, Brecher P. 1992. Rapid expression of fibronectin in the rabbit heart after myocardial infarction with and without reperfusion. J Clin Invest 89:1060–1068.

    Article  PubMed  CAS  Google Scholar 

  32. Kozlovaskis PL, Gerdes AM, Smets M, Moore JA, Bassett AL, Myerburg RJ. 1991. Regional increase in isolated myocyte volume in chronic myocardial infarction in cats. J Mol Cell Cardiol 23: 1459–1466.

    Article  Google Scholar 

  33. Johns TNP, Olson BJ. 1954. Experimental myocardium infarction: method of coronary occlusion in small animals. Ann Surg 140:675–682.

    Article  PubMed  CAS  Google Scholar 

  34. Selye H, Bajusz E, Grasso S, Mendell P. 1960. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 11:398–407.

    Article  PubMed  CAS  Google Scholar 

  35. Pfeffer MA, Pfeffer JM, Fletcher PJ, Braunwald E. 1991. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–H1414.

    PubMed  CAS  Google Scholar 

  36. Gopalkrishnan M, Triggle DJ, Rutledge A, Kwon YW, Bauer JA, Fung HL. 1991. Regulation of K+ and Ca2+ channels in experimental cardiac failure. Am J Physiol 261:H1979–H1987.

    Google Scholar 

  37. Chasteney EA, Liang CS, Hood WB Jr. 1992. β-adrenoeeptor and adenylate cyclase function in the infarct model of rat heart failure. Proc Soc Exp Biol Med 200:90–94.

    PubMed  CAS  Google Scholar 

  38. Anversa P, Beghi C, Kikkawa Y, Olivetti G. 1986. Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58:26–37.

    Article  PubMed  CAS  Google Scholar 

  39. Anversa P, Beghi C, McDonald SL, Levicky V, Kikkawa Y, Olivetti G et al. 1984. Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat. Am J Pathol 116: 504–513.

    PubMed  CAS  Google Scholar 

  40. Zimmer HG, Gerdes AM, Lorlet S, Mall G. 1990. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol 22:1231–1243.

    Article  PubMed  CAS  Google Scholar 

  41. Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E. 1981. Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Effects on systolic function. Circ Res 49:618–626.

    Article  PubMed  CAS  Google Scholar 

  42. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. 1984. Ventricular performance in rats with myocardial infarction and failure. Am J Med 76:99–103.

    Article  PubMed  CAS  Google Scholar 

  43. Dixon IMC, Lee S-L, Dhalla NS. 1990. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 66:782–788.

    Article  PubMed  CAS  Google Scholar 

  44. Ren B, Lukas A, Shao Q, Guo M, Takeda N, Aitken RM, Dhalla NS. 1998. Electrocardiographic changes and mortality due to myocardial infarction in rats with or without imidapril treatment. J Cardiovasc Pharmacol Therapeut 3:11–22.

    Article  CAS  Google Scholar 

  45. Kuizinga MC, Smits JF, Arends JW, Daemen MJAP. 1998. AT2 receptor blockade reduces cardiac interstitial cell DNA synthesis and cardiac function after rat myocardial infarction. J Mol Cell Cardiol 30:425–434.

    Article  PubMed  CAS  Google Scholar 

  46. Liu Y-H, Yang X-P, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. 1997. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935.

    Article  PubMed  CAS  Google Scholar 

  47. Ruzicka M, Skarda V, Leenen FHH. 1995. Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 92:3568–3573.

    Article  PubMed  CAS  Google Scholar 

  48. Gervais M, Fornes P, Richer C, Nisato D, Giudicelli JF. 2000. Effects of angiotensin II AT1-receptor blockade on coronary dynamics, function, and structure in postischemic heart failure in rats. J Cardiovasc Pharmacol 36:329–337.

    Article  PubMed  CAS  Google Scholar 

  49. Fischer TA, Singh K, O’Hara DS, Kaye DM, Kelly RA. 1998. Role of AT1 and AT2 receptors in regulation of MAPKs and MKP-1 by ANG II in adult cardiac myocytes. Am J Physiol 275:H906–H916.

    PubMed  CAS  Google Scholar 

  50. Yang X, Zhu Q, Fong J, Gu X, Hicks GL Jr, Bishop SP, Wang T. 1996. Enalaprilat, an angiotensin-converting enzyme inhibitor, enhances functional preservation during long-term cardiac preservation. Possible involvement of bradykinin and PKC. J Mol Cell Cardiol 28:1445–1452.

    Article  PubMed  CAS  Google Scholar 

  51. Flesch M, Schiffer F, Zolko O, Pinto Y, Stasch JP, Knorr A, Ettelbruck S, Bohm M. 1997. Angiotensin receptor antagonism and angiotensin converting enzyme inhibition improve diastolic dysfunction and Ca2+-ATPase expression in the sarcoplasmic reticulum in hypertensive cardiomyopathy. J Hypertension 15:1001–1009.

    Article  CAS  Google Scholar 

  52. Shao Q, Ren B, Zarain-Herzberg A, Ganguly PK, Dhalla NS. 1999. Captopril treatment improves the sarcoplasmic reticular Ca2+ transport in heart failure due to myocardial infarction. J Mol Cell Cardiol 31:1663-1672.

    Article  PubMed  CAS  Google Scholar 

  53. Rhee SG. 2001. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem 70:281–312.

    Article  PubMed  CAS  Google Scholar 

  54. Toker A. 1998. The synthesis and cellular roles of phosphatidylinositol 4,5-bisphosphate. Curr Opin Cell Biol 10:254–261.

    Article  PubMed  CAS  Google Scholar 

  55. Buckland AG, Wilton DC. 2000. Anionic phospholipids, interfacial binding and the regulation of cell functions. Biochim Biophys Acta 1483:199–216.

    Article  PubMed  CAS  Google Scholar 

  56. Downes CP, Currie RA. 1998. Lipid signaling. Curr Biol 8:R865–R867.

    Article  PubMed  CAS  Google Scholar 

  57. Ji QS, Winnier GE, Niswender KD, Hortsman D, Wisdom R, Magnuson MA, Carpenter G. 1997. Essential role of the tyrosine kinase substrate phospholipase C-γ1 in mammalian growth and development. Proc Natl Acad Sei USA 94:2999–3003.

    Article  CAS  Google Scholar 

  58. Singer WD, Brown HA, Sternweis PC. 1997. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem 66:475–509.

    Article  PubMed  CAS  Google Scholar 

  59. Yagisawa H, Sakuma K, Paterson HE, Cheung R, Allen V, Hirata H, Watanabe Y, Hirata M, Williams RL, Katan M. 1998. Repalcements of single basic amino acids in the pleckstrin homology domain of phospholipase C-δ1 alter the ligand binding, phospholipase activity and interaction with the plasma membrane. J Biol Chem 273:417–424.

    Article  PubMed  CAS  Google Scholar 

  60. James SR, Downes CP. 1997. Structural and mechanistic features of phospholipase C: effectors of inositol phospholipid-mediated signal transduction. Cell Signal 9:329–336.

    Article  PubMed  CAS  Google Scholar 

  61. Katan M. 1998. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim Biophys Acta 1436:5–17.

    Article  PubMed  CAS  Google Scholar 

  62. Rhee SG, Bae YS. 1997. Regulation of phosphoinositide-specific phospholipase C isoenzymes. J Biol Chem 272:15045–15048.

    Article  PubMed  CAS  Google Scholar 

  63. Lee CW, Lee KH, Lee SB, Park D, Rhee SG. 1994. Regulation of phospholipase C-β4 by ribonucleotides and the a subunit of Gq. J Biol Chem 269:25335–25338.

    PubMed  CAS  Google Scholar 

  64. van Bilsen, 1997. M. Signal transduction revisited: recent developments in angiotensin II signaling in the cardiovascular system. Cardiovasc Res 36:310–322.

    Article  PubMed  Google Scholar 

  65. Tappia PS, Padua RR, Panagia V, Kardami E. 1999. Fibroblast growth factor-2 stimulates phospholipase Cβ in adult cardiomyocytes. Biochem Cell Biol 77:569–575.

    Article  PubMed  CAS  Google Scholar 

  66. Sekiya F, Bae Y-S, Rhee SG. 1999. Regulation of phospholipase C isoenzymes: activation of phospholipase C-γ in the absence of tyrosine-phosphorylation. Chem Phys Lipids 98:3–11.

    Article  PubMed  CAS  Google Scholar 

  67. Im H-J, Russell MA, Feng J-F. 1997. Transglutaminase II: a new class of GTP-binding protein with new biological functions. Cell Signal 9:477–482.

    Article  PubMed  CAS  Google Scholar 

  68. Park H, Park ES, Lee HS, Yun HY, Kwon NS, Baek KJ. 2001. Distinct characteristic of Gαh (transglutaminase II) by compartment: GTPase and transglutaminase activities. Biochem Biophys Res Commun 284:496–500.

    Article  PubMed  CAS  Google Scholar 

  69. Lopez I, Mak EJ, Ding J, Hamm HE, Lomasney JW. 2001. A novel afunctional phopsholipase C that is regulated by Gα12 and stimulates the Ras/mitogen-activated protein kinase pathway. J Biol Chem 276:2758–2765.

    Article  PubMed  CAS  Google Scholar 

  70. Henry RA, Boyce SY, Kurz T, Wolf RA. 1995. Stimulation and binding of myocardial phospholipase C by phosphatidic acid. Am J Physiol 269:C349–C358.

    PubMed  CAS  Google Scholar 

  71. Tappia PS, Yu C-H, Di Nardo P, Pasricha AK, Dhalla NS, Panagia V. 2001. Depressed responsiveness of phospholipase C isoenzymes to phosphatidic acid in congestive heart failure. J Mol Cell Cardiol 33:431–440.

    Article  PubMed  CAS  Google Scholar 

  72. Bony C, Roche S, Shuichi U, Sasaki T, Crackower MA, Penninger J, Mano H, Puceat M. 2001. A specific role of phosphatidylinositol 3-kinase γ. A regulation of autonomic Ca2+ oscillations in cardiac cells. J Cell Biol 152:717–728.

    Article  PubMed  CAS  Google Scholar 

  73. Tall E, Dormán G, Garcia P, Runnels L, Shah S, Chen J, Profit A, Gu Q-M, Chaudhary A, Prestwich GD, Rebecchi MJ. 1997. Phosphoinositide binding specificity among phospholipase C isoenzymes as determined by photo-cross-linking to novel substrate and product analogs. Biochemistry 36:7239–7248.

    Article  PubMed  CAS  Google Scholar 

  74. Wolf RA. 1993. Specific expression of phospholipase C-δ1 and γ1 by adult cardiac ventricular myocytes (Abstract) Circulation 88 (Suppl. 1): I–241.

    Article  Google Scholar 

  75. Wolf RA. 1992. Association of phospholipase C-δ with a highly enriched preparation of canine sarcolemma. Am J Physiol 263:0021–0028.

    Google Scholar 

  76. Gonzalez-Yanes C, Santos-Alvarez J, Sanchez-Margalet V. 2001. Pancreastatin, a chromogranin A-derived peptide, activates Gα16 and phospholipase C-β2 by interacting with specific receptors in rat heart membranes. Cell Signal 13:43–49.

    Article  PubMed  CAS  Google Scholar 

  77. Song C, Hu CD, Masago M, Kariyai K, Yamawaki-Kataoka Y, Shibatohge M, Wu D, Satoh T, Kataoka T. 2001. Regulation of a novel human phospholipase C, PLCε, through membrane targeting by Ras. J Biol Chem 276:2752–2757.

    Article  PubMed  CAS  Google Scholar 

  78. Arthur JF, Matkovich SJ, Mitchell CJ, Biden TJ, Woodcock EA. 2001. Evidence for selective coupling of α1-adrenergic receptors to phospholipase C-β1 in rat neonatal cardiomyocytes. J Biol Chem 276:37341–37346.

    Article  PubMed  CAS  Google Scholar 

  79. Dhalla NS, Xu Y-J, Sheu S-S, Tappia PS, Panagia V. 1997. Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J Mol Cell Cardiol 29:2865–2871.

    Article  PubMed  CAS  Google Scholar 

  80. Meij JTA, Panagia V, Mesaeli N, Peachell JL, Afzal N, Dhalla NS. 1997. Identification of changes in cardiac phospholipase C activity in congestive heart failure. J Mol Cell Cardiol 29:237–246.

    Article  PubMed  CAS  Google Scholar 

  81. Shoki M, Kawaguchi H, Okamoto H, Sano H, Sawa H, Kudo T, Hirao N, Sakata Y, Yasuda H. 1992. Phosphatidylinositol and inositolphosphatidate metabolism in hypertrophied rat heart. Jpn Circ J 56:142–147.

    Article  PubMed  CAS  Google Scholar 

  82. Kawaguchi H, Sano H, Iizuka K, Okada H, Kudo T, Kageyama K, Muramoto S, Murakami T, Okamoto H, Mochizuki N, Kitabatke A. 1993. Circ Res 72:966–972.

    Article  PubMed  CAS  Google Scholar 

  83. Sakata Y. 1993. Tissue factors for contributing to cardiac hypertrophy in cardiomyopathic hamsters (Bio 14.6): involvement of transforming growth factor-β1 and tissue rennin-angiotensin system in the progression of cardiac hypertrophy. Hokkaido Igaku Zasshi 68:18–23.

    PubMed  CAS  Google Scholar 

  84. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. 2000. Overexpression of angiotensin II type 1 receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc Natl Acad Sei USA 97:931–936.

    Article  CAS  Google Scholar 

  85. Lamers JM, Eskildesen-Helmond YE, Resink AM, Dejonge HW, Bezstarosti K, Sharma HS, van Heugten HA. 1995. Endothelin-1-induced phospholipase C-β and D and protein kinase C isoenzyme in sigmaling leading to hypertrophy in rat cardiomyocytes. J Cardiovasc Pharmacol 26 (Suppl. 3):S100–S103.

    PubMed  CAS  Google Scholar 

  86. Schnabel P, Mies F, Nohr T, Geisler M, Bohm M. 2000. Differential regulation of phospholipase C-beta isozymes in cardiomyocyte hypertrophy. Biochem Biophys Res Commun 275.1–6.

    Article  PubMed  CAS  Google Scholar 

  87. D’Angelo DD, Sakata Y, Lorenz JN, Boivin GP, Walsh RA, Dorn G. 1997. Transgenic Gαq overexpression induces contractile failure in mice. Proc Nad Acad Sei USA 94:8121–8126.

    Article  Google Scholar 

  88. Sakata Y, Hoit BD, Liggett SB, Walsh KA, Dorn GW. 1998. Decompensation of pressure-overload hypertrophy in Gαq-overexpressing mice. Circulation 97:1488–1495.

    Article  PubMed  CAS  Google Scholar 

  89. Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ. 1998. Transient cardiac expression of constitutively active Gαq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sei USA 95:13893–13898.

    Article  CAS  Google Scholar 

  90. Dorn GW,Tepe NM,Wu G,Yatani A, Liggett SB. 2000. Mechanisms of impaired β-adrenergic receptor signaling in Gαq-mediated cardiac hypertrophy and ventricular dysfunction. Mol Pharmacol 57:278–287.

    PubMed  CAS  Google Scholar 

  91. Esler M, Kaye D, Lambert G, Esler D, Jennings G. 1997. Adrenergic nervous system in heart failure. Am J Cardiol 80:7L–14L.

    Article  PubMed  CAS  Google Scholar 

  92. Dixon IMC, Dhalla NS. 1991. Alterations in cardiac adrenoceptors in congestive heart failure secondary to myocardial infarction. Coronary Artery Dis 2:805–814.

    Google Scholar 

  93. Ju H, Zaho S, Tappia PS, Panagia V, Dixon IMC. 1998. Expression of Gqα and PLC-β in scar and border tissue in heart failure due to myocardial infarction. Circulation 97:892–898.

    Article  PubMed  CAS  Google Scholar 

  94. Jalili T, Takeishi Y, Song G, Ball NA, Howies G, Walsh RA. 1999. PKC translocation without changes in Gαq and PLC-β protein abundance in cardiac hypertrophy and failure. Am J Physiol 277: H2298–H22304.

    PubMed  CAS  Google Scholar 

  95. Adams JW, Brown JH. 2001. G-proteins in growth and apoptosis: lessons from the heart. Oncogene 20:1626–1634.

    Article  PubMed  CAS  Google Scholar 

  96. Panagia V, Tappia PS, Yu C, Takeda N, Dhalla NS. 1999. Abnormalities in sarcolemmal phospholipase D and phospholipase C isoenzymes and in their interactions in post-infarcted failing hearts. Lipids 34:S73–S74.

    Article  PubMed  CAS  Google Scholar 

  97. Hwang K-C, Gray C, Sweet WE, Moravec CS, Im MJ. 1996. α1-adrenergic receptor coupling with Gh in the fading human heart. Circulation 94:718–726.

    Article  PubMed  CAS  Google Scholar 

  98. Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, Arthur JF, Woodcock EA, Feneley MP, Graham RM. 2001. Targeted α1A-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89:343–350.

    Article  PubMed  CAS  Google Scholar 

  99. Rabkin SW, Goutsouliak V, Kong JY 1997. Angiotensin II induces activation of phosphatidylinositol 3-kinase in cardiomyocytes. J Hypertens 15:891–899.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramjit S. Tappia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tappia, P.S., Aroutiounova, N., Dhalla, N.S. (2003). Role of Renin-Angiotensin System in Phospholipase C-Mediated Signaling in Congestive Heart Failure. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics