Skip to main content

Rab3 Small GTP—Binding Proteins: Regulation by Calcium/Calmodulin

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

  • 137 Accesses

Summary

Rab proteins, forming a subfamily of 52 predominantly membrane-bound, low molecular weight GTP-binding proteins (G-proteins) of the Ras superfamily, are involved in vesicle traffic between intracellular organelles, endocytosis and exocytosis, and may be regulated by calcium (Ca2 +) and/or calmodulin (CaM). Rab3A and Rab3B bind CaM, and both RabGDP-dissociation inhibitor (RabGDI) and CaM cause dissociation of Rab3A from membranes, to form soluble cytoplasmic Rab/CaM or Rab/RabGDI complexes. This shuttling is intimately connected with the cycling of Rab between the active GTP-bound (at organelle membranes) and inactive GDP-bound (cytosolic) state, enabling Rab to function as molecular switches in the regulation of various cell functions. Rab3A inhibits, while Rab3B promotes, Ca2+-dependent exocytosis. Recent work has demonstrated that Rab3’s effects on exocytosis are regulated by CaM, in that CaM may enhance the dissociation of Rab by RabGDI in a Ca2+-dependent manner. RabGDI binds only to inactive Rab, while CaM binds with much higher affinity to active Rab3A. Ca2+/CaM can induce GDP to GTP exchange on Rab if RabGDI is not bound. It is proposed that increased intracellular Ca2+ concentration causes RabGDI to be replaced by CaM on Rab-GDP, allowing CaM to exert its effects through an activated Rab3. At high intracellular Ca2+ levels, the Rab3-GTP/CaM complex may predominate over the Rab3-GDP/RabGDI complex. Competitive rebinding of RabGDI to Rab-GDP, but not to Rab-GTP, would cause release of CaM and reversal of its effects. Thus, Ca2+ and CaM appear to be important regulators of Rab3 function. It is important to elucidate the exact mechanisms of such interactions, and which intracellular pathways are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wieland T, Chen CK. 1999. Regulators of G-protein signaling: a novel protein family involved in timely deactivation and desensitization of signaling via heterotrimeric G proteins. Arch Pharmacol 360:14–26.

    Article  CAS  Google Scholar 

  2. Offermanns S, Simon MI. 1996. Organization of transmembrane signalling by heterotrimeric G proteins. Cancer Surv 27:177–198.

    PubMed  CAS  Google Scholar 

  3. Clapham DE, Neer EJ. 1997. G protein beta gamma subunits. Annu Rev Pharmacol Toxicol 37:167–203.

    Article  PubMed  CAS  Google Scholar 

  4. Berman DM, Gilman AG. 1998. Mammalian RGS proteins: barbarians at the gate. J Biol Chem 273:1269–1272.

    Article  PubMed  CAS  Google Scholar 

  5. Ross EM, Wilkie TM. 2000. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827.

    Article  PubMed  CAS  Google Scholar 

  6. Zerangue N, Jan LY. 1998. G-protein signaling: fine-tuning signaling kinetics. Curr Biol 8:R313-R316.

    Article  PubMed  CAS  Google Scholar 

  7. Bhullar RP. 1997. Small-molecular-weight G proteins. In: Neuromethods,Vol 31: G Protein methods and protocols. Ed R K Mishra, BG Baker and AA Boulton. New York: Humana Press. Inc.

    Google Scholar 

  8. Takai Y, Sasaki T, Matozaki T. 2001. Small GTP-binding proteins. Physiol Rev 81:153–208.

    PubMed  CAS  Google Scholar 

  9. Pereira-Leal JB, Seabra MC. 2001. Evolution of the Rab family of small GTP-binding proteins. J Mol Biol 313:889–901.

    Article  PubMed  CAS  Google Scholar 

  10. Martinez O, Goud B. 1998. Rab proteins. Biochim Biophys Acta 1404:101–112.

    Article  PubMed  CAS  Google Scholar 

  11. Schimmoller F, Simon I, Pfeffer SR. 1998. Rab GTPases, directors of vesicle docking. J Biol Chem 273:22161–22164.

    Article  PubMed  CAS  Google Scholar 

  12. Stenmark H, Olkkonen VM. 2001. The Rab GTPase family. Genome Biol 2:Reviews3007.1-Reviews3007.7.

    Google Scholar 

  13. Coppola T, Perret-Menoud V, Luthi S, Farnsworth CC, Glomset JA, Regazzi R. 1999. Disruption of Rab3-calmodulin interaction, but not other effector interactions, prevents Rab3 inhibition of exocytosis. EMBO J 18:5885–5891.

    Article  PubMed  CAS  Google Scholar 

  14. Chin D, Means AR. 2000. Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10:322–328.

    Article  PubMed  CAS  Google Scholar 

  15. Crivici A, Ikura M. 1995. Molecular and structural basis of target recognition by calmodulin. Annu Rev Biophys Biomol Struct 24:85–116.

    Article  PubMed  CAS  Google Scholar 

  16. Putney JW. 1998. Calcium signaling: Up, down, up, down ... what’s the point? Science 279:191–192.

    Article  PubMed  CAS  Google Scholar 

  17. Soderling TR. 1999. The Ca2+-calmodulin-dependent protein kinase cascade. Trends Biochem Sei 24:232–236.

    Article  CAS  Google Scholar 

  18. Sudhof TC. 1997. Function of Rab3 GDP-GTP exchange. Neuron 18:519–522.

    Article  PubMed  CAS  Google Scholar 

  19. Pfeffer SR, Dirac-Svejstrup AB, Soldati T. 1995. Rab GDP dissociation inhibitor: putting rab GTPases in the right place. J Biol Chem 270:17057–17059.

    Article  PubMed  CAS  Google Scholar 

  20. Regazzi R, Kikuchi A, Takai Y, Wollheim CB. 1992. The small GTP-binding proteins in the cytosol of insulin-secreting cells are complexed to GDP dissociation inhibitor proteins. J Biol Chem 267:17512–17519.

    PubMed  CAS  Google Scholar 

  21. Ullrich O, Stenmark H, Alexandrov K, Huber LA, Kaibuchi K, Sasaki T, Takai Y, Zerial M. 1993. Rab GDP dissociation inhibitor as a general regulator for the membrane association of rab proteins. J Biol Chem 268:18143–18150.

    PubMed  CAS  Google Scholar 

  22. Araki S, Kaibuchi K, Sasaki T, Hata Y, Takai Y. 1991. Role of the C-terminal region of smg p25A in its interaction with membranes and the GDP/GTP exchange protein. Mol Cell Biol 11:1438–1447.

    PubMed  CAS  Google Scholar 

  23. Khosravi-Far R, Lutz RJ, Cox AD, Conroy L, Bourne JR, Sinensky M, Balch WE, Buss JE, Der CJ. 1991. Isoprenoid modification of rab proteins terminating in CC or CXC motifs. Proc Nad Acad Sei USA 88:6264–6268.

    Article  CAS  Google Scholar 

  24. Musha T, Kawata M, Takai Y. 1992. The geranylgeranyl moiety but not the methyl moiety of the smg-25A/rab3A protein is essential for the interactions with membrane and its inhibitory GDP/GTP exchange protein. J Biol Chem 267:9821–9825.

    PubMed  CAS  Google Scholar 

  25. Park JB, Farnsworth CC, Glomset JA. 1997. Ca2+/calmodulin causes Rab3A to dissociate from synaptic membranes. J Biol Chem 272:20857–20865.

    Article  PubMed  CAS  Google Scholar 

  26. Alory C, Balch WE. 2000. Molecular basis for Rab prenylation. J Cell Biol 150:89–103.

    Article  PubMed  CAS  Google Scholar 

  27. Pfeffer SR. 1994. Rab GTPases: master regulators of membrane trafficking. Curr Opin Cell Biol 6:522–526.

    Article  PubMed  CAS  Google Scholar 

  28. Soldati T, Shapiro AD, Svejstrup AB, Pfeffer SR. 1994. Membrane targeting of the small GTPase Rab9 is accompanied by nucleotide exchange. Nature 369:76–78.

    Article  PubMed  CAS  Google Scholar 

  29. Dirac-Svejstrup AB, Sumizawa T, Pfeffer SR. 1997. Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16:465–472.

    Article  PubMed  CAS  Google Scholar 

  30. Ullrich O, Horiuchi H, Bucci C, Zerial M. 1994. Membrane association of Rab5 mediated by GDP-dissociation inhibitor and accompanied by GDP/GTP exchange. Nature 368:157–160.

    Article  PubMed  CAS  Google Scholar 

  31. Chung SH, Takai Y, Holz RW. 1995. Evidence that the Rab3a-binding protein, rabphilin3a, enhances regulated secretion. Studies in adrenal chromaffin cells. J Biol Chem 270:16714–16718.

    Article  PubMed  CAS  Google Scholar 

  32. Wang Y, Okamoto M, Schmitz F, Hofmann K, Sudhof TC. 1997. Rim is a putative Rab3 effector in regulating synaptic-vesicle fusion. Nature 388:593–598.

    Article  PubMed  CAS  Google Scholar 

  33. Clabecq A, Henry JP, Darchen F. 2000. Biochemical characterization of Rab3-GTPase-activating protein reveals a mechanism similar to that of Ras-GAP. J Biol Chem 275:31786–31791.

    Article  PubMed  CAS  Google Scholar 

  34. Kajio H, Olszewski S, Rosner PJ, Donelan MJ, Geoghegan KF, Rhodes CJ. 2001. A low-affinity Ca2+-dependent association of calmodulin with the Rab3A effector domain inversely correlates with insulin exocytosis. Diabetes 50:2029–2039.

    Article  PubMed  CAS  Google Scholar 

  35. Pfeffer SR. 2001. Rab GTPases: specifying and deciphering organelle identity and function. Trends Cell Biol 11:487–491.

    Article  PubMed  CAS  Google Scholar 

  36. Augustine GJ, Burns ME, DeBello WM, Hilfiker S, Morgan JR, Schweizer FE, Tokumaru H, Umayahara K. 1999. Proteins involved in synaptic vesicle trafficking. J Physiol 520:33–41.

    Article  PubMed  CAS  Google Scholar 

  37. Hess SD, Doroshenko PA, Augustine GJ. 1993. A functional role for GTP-binding proteins in synaptic vesicle cycling. Science 259:1169–1172.

    Article  PubMed  CAS  Google Scholar 

  38. Novick P, Field C, Schekman R. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215.

    Article  PubMed  CAS  Google Scholar 

  39. Soldati T, Rancano C, Geissler H, Pfeffer SR. 1995. Rab7 and Rab9 are recruited onto late endosomes by biochemically distinguishable processes. J Biol Chem 270:25541–25548.

    Article  PubMed  CAS  Google Scholar 

  40. Ayad N, Hull M, Mellman I. 1997. Mitotic phosphorylation of rab4 prevents binding to a specific receptor on endosome membranes EMBO J 16:4497–4507.

    Article  PubMed  CAS  Google Scholar 

  41. Dorn GW 2nd, Mochly-Rosen D. 2002. Intracellular transport mechanisms of signal transducers. Ann Rev Physiol 64:407–429.

    Article  CAS  Google Scholar 

  42. Chattopadhyaya R, Meador WE, Means AR, Quiocho FA. 1992. Calmodulin structure refined at 1.7 Å resolution. J Mol Biol 228:1177–1192.

    Article  PubMed  CAS  Google Scholar 

  43. Meador WE, Means AR, Quiocho FA. 1992. Target enzyme recognition by calmodulin: 2.4 Å structure of a calmodulin-peptide complex. Science 257:1251–1255.

    Article  PubMed  CAS  Google Scholar 

  44. Matsushima N, Hayashi N, Jinbo Y, Izumi Y 2000. Ca2+-bound calmodulin forms a compact globular structure on binding four trifluoperazine molecules in solution. Biochem J 347:211–215.

    Article  PubMed  CAS  Google Scholar 

  45. Wriggers W, Mehler E, Pitici F, Weinstein H, Schulten K. 1998. Structure and dynamics of calmodulin in solution. Biophys J 74:1622–1639.

    Article  PubMed  CAS  Google Scholar 

  46. Finn BE, Drakenberg T, Forsen S. 1993. The structure of apo-calmodulin. A 1H NMR examination of the carboxy-terminal domain. FEBS Lett 336:368–374.

    Article  PubMed  CAS  Google Scholar 

  47. Rhoads AR, Friedberg F. 1997. Sequence motifs for calmodulin regulation. FASEB J 11:331–340.

    PubMed  CAS  Google Scholar 

  48. James P, Vorherr T, Carafoli E. 1995. Calmodulin-binding domains: just two faced or multi-faceted? Trends Biochem Sci 20:38–42.

    Article  PubMed  CAS  Google Scholar 

  49. Sidhu RS, Bhullar RP. 2001. Rab3B in human platelet is membrane bound and interacts with Ca2+/calmodulin. Biochem Biophys Res Commun 289:1039–1043.

    Article  PubMed  CAS  Google Scholar 

  50. Lin CG, Lin YC, Liu HW, Kao LS. 1997. Characterization of Rab3A, Rab3B and Rab3C: different biochemical properties and intracellular localization in bovine chromaffin cells. Biochem J 324:85–90.

    PubMed  CAS  Google Scholar 

  51. Valentijn JA, Jamieson JD. 1998. On the role of rab GTPases: what can be learned from the developing pancreas. Biochem Biophys Res Commun 243:331–336.

    Article  PubMed  CAS  Google Scholar 

  52. Chung SH, Joberty G, Gelino EA, Macara IG, Holz RW. 1999. Comparison of the effects on secretion in chromaffin and PC12 cells of Rab3 family members and mutants. Evidence that inhibitory effects are independent of direct interaction with Rabphilin3. J Biol Chem 274:18113–18120.

    Article  PubMed  CAS  Google Scholar 

  53. Darchen F, Zahraoui A, Hammel F, Monteils MP, Tavitian A, Scherman D. 1990. Association of the GTP-binding protein Rab3A with bovine adrenal chromaffin granules. Proc Natl Acad Sei USA 87:5692–5696.

    Article  CAS  Google Scholar 

  54. Darchen F, Senyshyn J, Brondyk WH, Taatjes DJ, Holz RW, Henry JP, Denizot JP, Macara IG. 1995. The GTPase Rab3a is associated with large dense core vesicles in bovine chromaffin cells and rat PC12 cells. J Cell Sei 108:1639–1649.

    CAS  Google Scholar 

  55. Fischer von Mollard G, Mignery GA, Baumert M, Perin MS, Hanson TJ, Burger PM, Jahn R, Sudhof TC. 1990. Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. Proc Natl Acad Sei USA 87:1988–1992.

    Article  CAS  Google Scholar 

  56. Geppert M, Bolshakov VY, Siegelbaum SA, Takei K, De Camilli P, Hammer RE, Sudhof TC. 1994. The role of Rab3A in neurotransmitter release. Nature 369:493–497.

    Article  PubMed  CAS  Google Scholar 

  57. Johannes L, Lledo PM, Roa M, Vincent JD, Henry JP, Darchen F. 1994. The GTPase Rab3a negatively controls calcium-dependent exocytosis in neuroendocrine cells. EMBO J 13:2029–2037.

    PubMed  CAS  Google Scholar 

  58. Holz RW, Brondyk WH, Senter RA, Kuizon L, Macara IG. 1994. Evidence for the involvement of Rab3A in Ca2+-dependent exocytosis from adrenal chromaffin cells. J Biol Chem 269:10229–10234.

    PubMed  CAS  Google Scholar 

  59. Oishi H, Sasaki T, Nagano F, Ikeda W, Ohya T, Wada M, Ide N, Nakanishi H, Takai Y. 1998. Localization of the Rab3 small G protein regulators in nerve terminals and their involvement in Ca2+-dependent exocytosis. J Biol Chem 273:34580–34585.

    Article  PubMed  CAS  Google Scholar 

  60. Geppert M, Goda Y, Stevens CF, Sudhof TC. 1997. The small GTP-binding protein Rab3A regulates a late step in synaptic vesicle fusion. Nature 387:810–814.

    Article  PubMed  CAS  Google Scholar 

  61. Castillo PE, Janz R, Sudhof TC, Tzounopoulos T, Malenka RC, Nicoll RA. 1997. Rab3A is essential for mossy fibre long-term potentiation in the hippocampus. Nature 388:590–593.

    Article  PubMed  CAS  Google Scholar 

  62. van der Meulen J, Bhullar RP, Chancellor-Maddison KA. 1991. Association of a 24-kDa GTP-binding protein, Gn24, with human platelet α-granule membranes. FEBS Lett 291:122–126.

    Article  PubMed  Google Scholar 

  63. Karniguian A, Zahraoui A, Tavitian A. 1993. Identification of small GTP-binding rab proteins in human platelets: thrombin-induced phosphorylation of rab3B, rab6, and rab8 proteins. Proc Natl Acad Sei USA 90:7647–7651.

    Article  CAS  Google Scholar 

  64. Nagata K, Okano Y, Nozawa Y. 1997. Differential expression of low Mr GTP-binding proteins in human megakaryoblastic leukemia cell line, MEG-01, and their possible involvement in the differentiation process. Thromb Haemost 77:368–375.

    PubMed  CAS  Google Scholar 

  65. Weber E, Jilling T, Kirk KL. 1996. Distinct functional properties of Rab3A and Rab3B in PC12 neuroendocrine cells. J Biol Chem 271:6963–6971.

    Article  PubMed  CAS  Google Scholar 

  66. Lledo PM, Vernier P, Vincent JD, Mason WT, Zorec R. 1993. Inhibition of Rab3B expression attenuates Ca2+-dependent exocytosis in rat anterior pituitary cells. Nature 364:540–544.

    Article  PubMed  CAS  Google Scholar 

  67. Wang KL, Roufogalis BD. 1999. Ca2+/calmodulin stimulates GTP binding to the ras-related protein ral-A. J Biol Chem 274:14525–14528.

    Article  PubMed  CAS  Google Scholar 

  68. Park JB, Kim JS, Lee JY, Kim J, Seo JY, Kim AR. 2002. GTP binds to Rab3A in a complex with Ca2+/calmodulin. Biochem J 362:651–657.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajinder P. Bhullar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sidhu, R.S., Clough, R.R., Bhullar, R.P. (2003). Rab3 Small GTP—Binding Proteins: Regulation by Calcium/Calmodulin. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics