Skip to main content

Modulation of Atrial Natriuretic Peptide (ANP)-C Receptor and Associated Signaling by Vasoactive Peptides

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

  • 131 Accesses

Summary

We have previously shown that pretreatment of A10 smooth muscle cells (SMC) with angiotensin II (Ang II) attenuated atrial natriuretic peptide (ANP) receptor-C (ANPC) mediated-inhibition of adenylyl cyclase without altering [125I]-ANP binding. In the present studies, we have investigated the modulation of ANP-C receptor signaling by C-ANP4–23, an analog of ANP that interacts specifically with ANP-C receptor and endothelin-1 (ET-1). Pretreatment of A10 SMC with C-ANP 4–23 for 24hrs resulted in the reduction in ANP receptor binding activity, whereas ET-1 treatment of the cells attenuated the expression of ANP-C receptor by about 60% as determined by immunoblotting. This decrease in receptor binding and receptor expression was reflected in attenuation of ANP-C receptor mediated-inhibition of adenylyl cyclase. C-ANP4–23 [des(Gln18,Ser19,Gln20,Leu21,Gly22) ANP4–23 NH2] a ring deleted peptide of ANP inhibited adenylyl cyclase activity in a concentration dependent manner with an apparent Ki of about 1 nM in control cells. The maximal inhibition observed was by about 30% which was almost completely attenuated by C-ANP4–23 and ET-1 treatments. In addition, Ang II-mediated inhibition of adenylyl cyclase was also attenuated by such treatments. The expression of Giα-2 and Giα-3 protein was decreased by C-ANP4–23 treatment, whereas it was augmented by ET-1 treatment. On the other hand, the expression of Gsα was augmented by C-ANP4–23and not by ET-treatment, whereas the expression of Gβ protein was unaltered by such treatments. The Gsα-mediated effects of some agonists on adenylyl cyclase activity were significantly increased by C-ANP4–23 treatment and was decreased by ET-1 treatment. These results suggest that both the vasoactive peptides down regulate ANP-C receptor in A10 SMC. The C-ANP4–23-induced down-regulation of ANP-C receptor and decreased expression of Giα proteins may be responsible for the attenuation of C-ANP4–23-mediated inhibition of adenylyl cyclase activity, whereas ET-induced attenuation of C-ANP4–23-mediated inhibition of adenylyl cyclase may be attributed to the decreased expression of ANP-C receptor and not to the overexpression of Giα proteins. From these studies it may be suggested that the desensitization of ANP-C receptors by ANP and endothelin in vivo may be one of the possible mechanisms for the pathophysiology of hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Bold AJ, Borenstein HB, Veress AT, Sonenberg H. 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sei 288:289–294.

    Google Scholar 

  2. De Bold AJ. 1982. Atrial natriuretic factor of the rat heart, studies on isolation and properties. Proc Soc Exp Biol Med 170:193–198.

    Google Scholar 

  3. Cantin M, Genest J. 1985. The heart and the atrial natriuretic factor. Endocr Rev 6:107–127.

    Article  PubMed  CAS  Google Scholar 

  4. Anand-Srivastava MB, Trachte G. 1993. Atrial natriuretic factor receptors and signal transduction mechanisms. Pharmacol Rev 45:455–497.

    PubMed  CAS  Google Scholar 

  5. Anand-Srivastava MB, Franks DJ, Cantin M, Genest J. 1984. Atrial natriuretic factor inhibits adenylyl cyclase activity. Biochem Ébiophys Commun 121:855–862.

    Article  CAS  Google Scholar 

  6. Anand-Srivastava MB, Cantin M, Genest J. 1985. Inhibition of pituitary adenylyl cyclase by atrial natriuretic factor. Life Sei 36:1873–1879.

    Article  CAS  Google Scholar 

  7. Anand-Srivastava MB, Cantin M. 1986. Atrial natriuretic factor receptors are negatively coupled to adenylyl cyclase activity in atrial and ventricular cardiocytes. Biochem Biophys Res Commun 138:427–436.

    Article  PubMed  CAS  Google Scholar 

  8. Anand-Srivastava, MB, Vinay P, Genest J, Cantin M. 1986. Effect of atrial natriuretic factor on adenylyl cyclase in various nephron segments. Am J Physiol 251:F417-F423.

    PubMed  CAS  Google Scholar 

  9. Bianchi C, Anand-Srivastava MB, De Lean A, Gutkowska J, Genest J, Cantin M. 1986. Localisation and characterization of specific receptors for atrial natriuretic factor in the ciliary processes of the eye. Curr Eye Res 5:283–293.

    Article  PubMed  CAS  Google Scholar 

  10. Harnet P, Tremblay J, Pang SC, Garcia R, Thibault C, Gutrowska J. 1984. Effect of native and synthetic atrial natriuretic factor on cyclic GMP. Biochem Biophys Res Commun 123:515–527.

    Article  Google Scholar 

  11. Waldman SA, Rapoport RM, Murad F. 1984. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem 259:15332–15334.

    Google Scholar 

  12. Winquist RJ, Farson EP, waldman SA, Schwartz K, Murad F, Rapoport RM. 1984. Atrial natriuretic factor elicits an endothelium-independent relaxation and activates particulate guanylate cyclase in vascular smooth muscle. Proc. Natl Acad Sei USA 81:7661–7664.

    Article  CAS  Google Scholar 

  13. Chinkers M, Garbers DL, Chang M, Lowe DG, Chin H, Goeddel DV, Shultz S. 1989. A membrane guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338:78–83.

    Article  PubMed  CAS  Google Scholar 

  14. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV 1989. A membrane guanylate cyclase is an atrial natriuretic peptide receptor. Embo J 8:1377–1384.

    PubMed  CAS  Google Scholar 

  15. Chang MS, Lowe DG, Lewis M, Hellaris R, Chen E, Goeddel DV. 1989. Differential activation of two different receptor guanylate cyclases. Nature 341:68–72.

    Article  PubMed  CAS  Google Scholar 

  16. Shultz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL. 1989. The primary structure of plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58:1155–1162.

    Article  Google Scholar 

  17. Anand-Srivastava MB, Srivastava AK, Cantin M. 1987. Pertussis toxin attenuates atrial natriuretic factor mediated inhibition of adenylyl cyclase. Involvement of inhibitory guanine nucleotide regulatory protein. J Biol Chem 262:4913–4934.

    Google Scholar 

  18. Fuller F, Porter JG, Arfsten AE, Miller J, Schilling JW, Scarborough RM, Lewicki JA, Shenk DB. 1988. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem 263:9395–9401.

    PubMed  CAS  Google Scholar 

  19. Anand-Srivastava MB, Siram MR, Cantin M. 1990. Ring-deleted analogs of atrial natriuretic factor inhibit adenylyl/cAMP system. Possible coupling of clearance receptors (C-ANF) to adenylyl cyclase/cAMP signal transduction system. J Biol Chem 265:8566–8572.

    PubMed  CAS  Google Scholar 

  20. Hirata M, Chang CH, Murad F. 1989. Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta 1010:346–351.

    Article  PubMed  CAS  Google Scholar 

  21. Anand-Srivastava MB. 1992. Characterization of ANF-R2-receptor-mediated inhibition of adenylyl cyclase. Mol Cell Biochem 6:83–92.

    Google Scholar 

  22. Burnett JC, Granger JP, Opgenosth TJ. 1984. Effect of synthetic atrial natriuretic factor on renal function and renin release. Am J Physiol 257:F863–F866.

    Google Scholar 

  23. De Léan A, Racz K, Gutkowska J, Nguyen TT, Cantin M, Genest J. 1984. Specific receptormediated inhibition by synthetic atrial natriuretic factor of hormone-stimulated steoidogenesis in cultured bovine adrenal cells. Endocrinology 115(4): 1636–1638.

    Article  PubMed  Google Scholar 

  24. Chabrier PE, Roubert P, Lonchampt MO, Pias P, Braquet P. 1988. Regulation of atrial natriuretic factor by angiotensin II in rat vascular smooth muscle cells. J Biol Chem 263:13199–13202.

    PubMed  CAS  Google Scholar 

  25. Palaparti A, Anand-Srivastava MB. 1998. Angiotensin II modulates ANP-R/ANP-C receptor-mediated inhibition of adenylyl cyclase in vascular smooth muscle cells. Role of protein kinase C. J Mol Cell Cardiol 30:1471–1482.

    Article  PubMed  CAS  Google Scholar 

  26. Salomon Y, Londos C, Rodbell MA. 1974. A highly sensitive adenylate cyclase assay. Annal Biochem 58:541–548.

    Article  CAS  Google Scholar 

  27. Lowry OM, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275.

    PubMed  CAS  Google Scholar 

  28. Anand-Srivastava MB, Gutkowska J, Cantin M. 1991. The presence of atrial natriuretic factor receptors of ANF-R2 subtype in rat platelets. Coupling to adenylyl cyclase/cyclic AMP signaltransduction system. Biochem J 278:211–217.

    PubMed  CAS  Google Scholar 

  29. Hirata Y, Hirose S, Takata S, Takagi Y, Natsubara. 1987. Down regulation of atrial natriuretic peptide receptor and cyclic GMP response in cultured rat vascular smooth msucle cells. Eur J Pharmacol 135:439–442.

    Article  PubMed  CAS  Google Scholar 

  30. Roubert P, Lonchampt MO, Chabrier PE, Plas P, Goulin J, Braquet P. 1987. Downregulation of atrial natriuretic factor receptors and correlation with cGMP accumulation in rat cultured vascular smooth msucle cells. Biochem Biophys Res Commun 148:61–67.

    Article  PubMed  CAS  Google Scholar 

  31. Neuser D, Bellemann P. 1986. Receptor binding, cGMP stimulation and receptor desensitization by atrial natriuretic peptides in cultured A10 vascular smooth muscle cells. FEBS Lett 209:347–351.

    Article  PubMed  CAS  Google Scholar 

  32. Schiffrin EL, Turgeon A, Tremblay J, Deslongchamps M. 1991. Effect of ANP, angiotensin, vasopressin and endothelin on ANP receptors in vascular cultured smooth msucle cells. Am J Physil 260: H58–H65.

    CAS  Google Scholar 

  33. Parson WJ, Stiles GL. 1987. Heterologous desensitization of the inhibitoty Al adenosine receptoradenylate cyclase system in rat epipolytes. Regulation of both Ns and Ni. J Biol Chem 262:841–847.

    Google Scholar 

  34. Vogelsang M, Broede-Sitz A, Schafer E, Zerkowski HR, Brodde OE. 1995. Endothelin ETA receptors couple to inositol phosphate formation and inhibition of adenylyl cyclase in human rat atrium. J Cardiovas Pharmacol 23:344–347.

    Article  Google Scholar 

  35. Takagi Y, Ninomiya H, Sakamoto A, Miwa S, Masaki T. 1995. Structural basis of G protein specificity of human endothelin receptors. A study with endothelin A/B chimeras. J Biol Chem 270:10072–10078.

    Article  PubMed  CAS  Google Scholar 

  36. Wu Wong JR, Opgenorth TJ. 1998. Endothelin and isoproterenol counter-regulate cAMP and mitogen-activated protein. J Cardiovasc Pharmacol 31, Supp 1:185–191.

    Article  Google Scholar 

  37. Mao J, Yuan H, Xie W, Simon MI, Wu D. 1998. Specific involvement of G proteins in regulation of serum response factor-mediated gene transcription by different receptors. J Biol Chem 273:27118–27123.

    Article  PubMed  CAS  Google Scholar 

  38. Yanaka N, Akatsuka H, Omari K. 1997. Protein kinase C activation down-regulates natriuretic peptide receptor C expression via transcriptional and post-translational pathway. FEBS Lett 418:333–336.

    Article  PubMed  CAS  Google Scholar 

  39. Palaparti A, Li Y, Anand-Srivastava MB. 2000. Inhibition of atrial natriuretic peptide (ANP)-C receptor expression by antisense oligodeoxynucleotides in A10 vascular smooth msucle cells is associated with attenuation of ANP-C receptor-mediated inhibition of adenylyl cyclase. Biochem J 346:313–320.

    Article  PubMed  CAS  Google Scholar 

  40. Anand-Srivastava MB. 1992. Enhanced expression of inhibitory guanine nucleotide regulatory protein in spontaneously hypertensive rats: relationship to adenylyl cyclase inhibition. Biochem J 288:79–85.

    PubMed  CAS  Google Scholar 

  41. Marcil J, Thibault C, Anand-Srivastava MB. 1997. Enhanced expression of Gi protein precedes the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol 29, 1009–1022.

    Article  PubMed  CAS  Google Scholar 

  42. Lynch CJ, Blakmore PF, Jonson EH, Wang RL, Krune PK, Exton JJ. 1989. Guanine nucleotide binding regulatory proteins and adenylate cyclase in livers of streptozotocin- and BB/w or diabetic rats. Immunodetection of Gs and Gi with antisera against synthetic peptides. J Clin Invest 83:2050–2062.

    Article  PubMed  CAS  Google Scholar 

  43. Anand-Srivastava MB. 1993. Rat platelets from spontaneously hypertensive rats exhibit decreased expression of inhibitory guanine nucleotide regulatory protein: relationship with adenylate cyclase activity. Circ Res 73:1032–1039.

    Article  PubMed  CAS  Google Scholar 

  44. Marcil J, Schiffrin EL, Anand-Srivastava MB. 1996. Aberrant adenylate cyclase/cAMP signal transduction and G protein levels in platelets from hypertensive patients: improve with antihypertensive drug therapy. Hypertension 28:83–90.

    Article  PubMed  CAS  Google Scholar 

  45. Anand-Srivastava MB. 2000. Dowregulation of atrial natriuretic peptide ANP-C receptor is associated with alterations in G-protein expresison in A10 smooth muscle cells. Biochemistry 39:6503–6513.

    Article  PubMed  CAS  Google Scholar 

  46. Reithman C, Geirschik P, Werdan K, Jakobs KH. 1990. Hormonal regulation of Gi alpha level and adenylyl cyclase responsiveness. Brit J Clin Pharmacol 30 suppl 1:118S–120S.

    Article  Google Scholar 

  47. Anand-Srivastava MB. 1989. Amiloride interacts with guanine nucleotide regulatory proteins and attenuates hormonal inhibition of adenylate cylcase. J Biol Chem 264:9491–9496.

    PubMed  CAS  Google Scholar 

  48. Marcil J, de Champlain J, Anand-Srivastava MB. 1998. Overexpression of Gi proteins precedes the development of DOCA-salt-induced hypertension: relationship with adenylyl cyclase. Cardiovas Res 39:492–505.

    Article  CAS  Google Scholar 

  49. Di Fusco F, Anand-Srivastava MB. 2000. Enhanced expression of Gi proteins in non-hypertrophic hearts from rats with hypertension-induced by L-NAME treatment. J Hypertens 18:1081–1090.

    Article  PubMed  Google Scholar 

  50. Hildebrandt JD, Hanoune J, Birnbaumer J. 1982. Guanine nucleotide inhibition of cycS49 mouse lymphoma cell membrane adenylyl cyclase. J Biol chem 257:14723–14725.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhu B. Anand-Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anand-Srivastava, M.B., Boumati, M. (2003). Modulation of Atrial Natriuretic Peptide (ANP)-C Receptor and Associated Signaling by Vasoactive Peptides. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics