Skip to main content

Abstract

The inelastic light scattering process that has become eponymously known as Raman scattering was first observed in 1928 by the Indian physicist Chandrasekhara Venkata Raman and reported in Nature (Raman and Krishnan, 1928). Raman scattering spectra, like infrared (IR) absorption spectra, originate from an exchange of energy between photons and vibrational or rotational motions in molecules (Nelson, 1985). Raman scattering is a light scattering phenomenon in which an incident photon beam of well-defined wavelength (a monochromatic laser) is scattered by molecules. While most of the radiation is scattered elastically (Rayleigh scattering), a small fraction of the photons are modified as an irradiated molecule undergoes a vibrational transition (Adar et al., 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adar F, Geiger R, Noonan J. Raman spectroscopy for process/ quality control. Appl Spectr 32: 45–101 (1997).

    Article  CAS  Google Scholar 

  • Angel MA, Myrick ML. Wavelength selection for fiber optic Raman spectroscopy. Appl Optics 29: 1350–1352 (1990).

    Article  CAS  Google Scholar 

  • Asher SA. UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry — Part 1. Anal Chem 65: 59A–66A (1993a).

    CAS  Google Scholar 

  • Asher SA. UV resonance Raman spectroscopy for analytical, physical and biophysical chemistry — Part 2. Anal Chem 65: 201A–210A (1993b).

    PubMed  CAS  Google Scholar 

  • Asher SA, Munro CH, Chi ZH. UV lasers revolutionize Raman spectroscopy. Laser Focus World 33: 99–109 (1997).

    CAS  Google Scholar 

  • Barthus RC, Poppi RJ. Determination of the total unsaturation in vegetable oils by Fourier transform Raman spectroscopy and multivariate calibration. Vibrat Spectr 26: 99–105 (2001).

    Article  CAS  Google Scholar 

  • Berger AJ, Itzkan I, Feld MS. Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy. Spectrochim Acta 53: 287–292 (1997).

    Google Scholar 

  • Berger AJ, Koo T-W, Itzkan I et al. Multicomponent blood analysis by near-infrared Raman spectroscopy. Appl Optics 38: 2916–2926 (1999).

    Article  CAS  Google Scholar 

  • Berger AJ, Wang Y, Feld MS. Rapid, noninvasive concentration measurements of aqueous biological analytes by near-infrared Raman spectroscopy. Appl Optics 35: 209–212 (1996).

    Article  CAS  Google Scholar 

  • Boustany NN, Crawford JM, Manoharan R et al. Analysis of nucleotides and aromatic amino acids in normal and neoplastic colon mucosa by ultraviolet resonance Raman spectroscopy. Lab Investirai 79: 1201–1214 (1999).

    CAS  Google Scholar 

  • Brown R, Smith WE, Graham D. Synthesis of a benzotriazole phosphoramidite for attachment of oligonucleotides to metal surfaces. Tet Lett 42: 2197–2200 (2001).

    Article  CAS  Google Scholar 

  • Chase B. A new generation of Raman instrumentation. Appl Spectr 48: 14A–19A (1994).

    Article  CAS  Google Scholar 

  • Chen XG, Lemmon DH, Bormett RW, Asher SA. Convenient microsampling system for UV resonance Raman spectroscopy. Appl Spectr 47: 248–249 (1993).

    Article  CAS  Google Scholar 

  • Chi ZH, Asher SA. Ultraviolet resonance Raman examination of horse apomyoglobin acid unfolding intermediates. Biochemistry 38: 8196–8203 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Choo-Smith LP, Maquelin K, van Vreeswijk T et al. Investigating microbial (micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67: 1461–1469 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Colthup NB, Daly LH, Wiberly SE. Introduction to Infrared and Raman Spectroscopy. Academic Press, New York (1990).

    Google Scholar 

  • Dereniak EL, Crowe DGiR. Optical Radiation Detectors. John Wiley and Sons, New York (1984).

    Google Scholar 

  • Dou X, Yamaguchi Y, Yamamoto H et al. Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vibrat Spectr 13: 83–89 (1996).

    Article  CAS  Google Scholar 

  • Dou X, Yamaguchi Y, Yamamoto H et al. Quantitative analysis of metabolites in urine by anti-Stokes Raman spectroscopy. Biospectroscopy 3: 113–120 (1997).

    Article  CAS  Google Scholar 

  • Edwards HGM, Farwell DW, Seaward MRD, Giacobini C. Preliminary Raman microscopic analyses of a lichen encrustation involved in the biodeterioration of Renaissance frescoes in central Italy. Internat Biodeteriorat Biodegrad 27: 1–9 (1991).

    CAS  Google Scholar 

  • Edwards HGM, Holder JM, Wynn-Williams DD. Comparative FT-Raman spectroscopy of Xanthoria lichen-substratum systems from temperate and Antartic habitats. Soil Biol Biochem 30: 1947–1953 (1998).

    Article  CAS  Google Scholar 

  • Efremov RG, Feofanov AV, Nabiev IR. Quantitative treatment of UV resonance Raman spectra of biological molecules — application to the study of membrane-bound proteins. Appl Spectr 45: 272–278 (1991).

    Article  CAS  Google Scholar 

  • Ferraro JR, Nakamoto K. Introductory Raman Spectroscopy. Academic Press, London (1994).

    Google Scholar 

  • Gfrorer A, Schnetter ME, Wolfrum J, Greulich KO. Double and triple helices of nucleic acid polymers, studied by UV resonance Raman spectroscopy. Berichte der Bunsen-Gesellschaft-Phys Chem Chem Phys 97: 155–162 (1993).

    Article  Google Scholar 

  • Ghiamati E, Manoharan R, Nelson WH, Sperry JF. UV resonance Raman spectra of Bacillus spores. Appl Spectr 46: 357–364 (1992).

    Article  CAS  Google Scholar 

  • Goodacre R, Timmins ÉM, Burton R et al. Rapid identification of urinary tract infection bacteria using hyperspectral, whole organism fingerprinting and artificial neural networks. Microbiol 144: 1157–1170 (1998).

    Google Scholar 

  • Hanlon EB, Manoharan R, Koo T-W et al. Prospects for in vivo Raman spectroscopy. Phys Med Biol 45: Rl–R59 (2000).

    Article  Google Scholar 

  • Heise HM, Bittner A, Marbach R. Near-infrared reflectance spectroscopy for noninvasive monitoring of metabolites. Clin Chem Lab Med 38: 137–145 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Holtz JSW, Holtz JH, Chi ZH, Asher SA. Ultraviolet Raman examination of the environmental dependence of bombolitin I and bombolitin III secondary structure. Biophys.776: 3227–3234 (1999).

    Article  Google Scholar 

  • Kaminaka S, Imamura Y, Shingu H et al. Studies of bovine enterovirus structure by ultraviolet resonance Raman spectroscopy. J Virol Meth 77: 117–123 (1999).

    Article  CAS  Google Scholar 

  • Kirschner C, Maquelin K, Pina P et al. Classification and identification of enterococci: a comparative phenotypic, genotypic, and vibrational spectroscopic study. J Clin Microbiol 39: 1763–1770 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa T. Investigation of higher order structures of proteins by ultraviolet resonance Raman spectroscopy. Prog Biophys Mol Biol 58: 1–18 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Kneipp K, Kneipp H, Itzkan I et al. Surface-enhanced Raman scattering: a new tool for biomedical spectroscopy. Curr Sci 77: 915–924 (1999).

    CAS  Google Scholar 

  • Lecomte S, Moreau NJ, Manfait M et al. Surface-enhanced Raman spectroscopy investigation of fluoroquinoline/ DNA/ DNA gyrase/ Mg2+ interactions: Part 1. adsorption of Pefloxacin on colloidal silver-effect of drug concentration, electrolytes, and pH. Biospectroscopy 1: 423–436 (1995).

    Article  CAS  Google Scholar 

  • Lednev IK, Karnoup AS, Sparrow MC, Asher SA. Alpha-helix peptide folding and unfolding activation barriers: a nanosecond UV resonance Raman study. J Am Chem Soc 121: 8074–8086 (1999).

    Article  CAS  Google Scholar 

  • Manoharan R, Ghiamati E, Chadha S et al. Effect of cultural conditions on deep UV resonance Raman spectra of bacteria. Appl Spectr 47: 2145–2150 (1993).

    Article  CAS  Google Scholar 

  • Manoharan R, Ghiamati E, Dalterio RA et al. UV resonance Raman spectra of bacteria, bacterial spores, protoplasts and calcium dipicolinate. J Microbiol Meth 11: 1–15 (1990).

    Article  CAS  Google Scholar 

  • Manoharan R, Wang Y, Feld MS. Histochemical analysis of biological tissues using Raman spectroscopy. Spectrochim Acta Part A: 215–249 (1996).

    Google Scholar 

  • Maquelin K. Confocal Raman Microspectroscopy. A Novel Diagnostic Tool in Medical Microbiology, Erasmus University, Rotterdam (2002).

    Google Scholar 

  • Maquelin K, Choo-Smith L-P, van Vreeswijk T et al. Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem 72: 12–19 (2000).

    Article  PubMed  CAS  Google Scholar 

  • McAnally G, McLaughlin C, Brown R et al. SERRS dyes. Part I. Synthesis of benzotriazole monoazo dyes as model analytes for surface enhanced resonance Raman scattering. Analyst 127: 838–841 (2002).

    Article  PubMed  CAS  Google Scholar 

  • McCreery RL. CCD array detectors for multichannel Raman spectroscopy. In Charge Transfer Devices in Spectroscopy. Sweedler J, Ratzlaff K, Denton M (Ed) pp. 227–229, VCH, New York (1994).

    Google Scholar 

  • McCreery RL. Instrumentation for dispersive Raman Sspectroscopy. In Modern Techniques in Raman Spectroscopy. Vol. 1. Laserna JJ (Ed) pp. 41–72, John Wiley and Sons, Chichester (1996).

    Google Scholar 

  • McGovern AC, Broadhurst D, Taylor J et al. Monitoring of complex industrial bioprocesses for metabolite concentrations using modern spectroscopies and machine learning: application to gibberellic acid production. Biotechnol Bioeng 78: 527–538 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Moskovits M. Surface-enhanced Raman spectroscopy. Rev Mod Phys 57: 783 (1985).

    Article  CAS  Google Scholar 

  • Mukerji I, Shiber MC, Fresco JR, Spiro TG. A UV resonance Raman study of hairpin dimer helices of d(A-G)(10) at neutral pH containing intercalated dA residues and alternating dG tetrads. Nucleic Acids Res 24: 5013–5020 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Munro CH, Asher SA. UV lasers light the way for novel spectroscopy. Photonics Spectra 30: 118–120 (1996).

    Google Scholar 

  • Nabiev I, Manfait M. Industrial applications of the surface-enhanced Raman-spectroscopy. Rev Industr Fr Petrol 48: 261–285 (1993).

    CAS  Google Scholar 

  • Nelson WH. Instrumental Methods for Rapid Microbiological Analysis. VCH Publishers (1985).

    Google Scholar 

  • Nelson WH, Manoharan R, Sperry JF. UV resonance Raman studies of bacteria. Appl Spectr Rev 27: 67–124 (1992a).

    Article  Google Scholar 

  • Nelson WH, Manoharan R, Sperry JF. UV resonance Raman studies of bacteria. Appl Spectr Rev 27: 67–124 (1992b).

    Article  Google Scholar 

  • Nelson WH, Sperry JF. UV resonance Raman spectroscopic detection and identification of bacteria and other microorganisms. In Modern Techniques for Rapid Microbiological Analysis. Nelson WH (Ed) pp. 97–143, VCH Publishers, New York (1991).

    Google Scholar 

  • Overman SA, Thomas GJ. Novel vibrational assignments for proteins from Raman spectra of viruses. J Raman Spectr 29: 23–29 (1998).

    Article  CAS  Google Scholar 

  • Pal A, Stokes DL, Alarie JP, Vo-Dinh T. Selective surface-enhanced Raman spectroscopy using a polymer coated-substrate. Anal Chem 67: 3154–3159 (1995).

    Article  CAS  Google Scholar 

  • Pilotto S, Pacheco MTT, Silveira L et al. Analysis of near-infrared Raman spectroscopy as a new technique for a transcutaneous non-invasive diagnosis of blood components. Lasers Med Sci 6: 2–9 (2000).

    Google Scholar 

  • Prescott B, Steinmetz W, Thomas GJ. Characterisation of DNA structures by laser Raman spectroscopy. Biopolymers 23: 235–256 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Qu JY, Wilson BC, Suria D. Concentration measurements of multiple analytes in human sera by near-infrared laser Raman spectroscopy. Appl Optics 38: 5491–5498 (1999).

    Article  CAS  Google Scholar 

  • Raman CV, Krishnan KS. A new type of secondary radiation. Nature 121: 501 (1928).

    Article  CAS  Google Scholar 

  • Roberts MJ, Garrison AA, Kercel SW, Muly EC. Raman spectrocopy for on-line, real-time, multi-point industrial chemical analysis. Process Control Quality 1: 281–291 (1991).

    CAS  Google Scholar 

  • Sanford CL, Mantooth BA, Jones BT. Determination of ethanol in alcohol samples using a modular Raman spectrometer. J Chem Ed 78: 1221–1224 (2001).

    Article  CAS  Google Scholar 

  • Sato H, Chiba H, Tashiro H, Ozaki Y. Excitation wavelength-dependent changes in Raman spectra of whole blood and hemoglobin: comparison of the spectra with 514.5-, 720-, and 1064-nm excitation. J Biomed Optics 6: 366–370 (2001).

    Article  CAS  Google Scholar 

  • Schuster KC, Reese I, Urlaub E et al. Multidimensional information on the chemical composition of single bacterial cells by confocal Raman microspectroscopy. Anal Chem 72: 5529–5534 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Shaw AD, Kaderbhai N, Jones A et al. Noninvasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Appl Spectr 53: 1419–1428 (1999).

    Article  CAS  Google Scholar 

  • Stevenson CL, Vo-Dinh T. Signal expressions in Raman spectroscopy. In Modern Techniques in Raman Spectroscopy. Vol. 1. Laserna JJ (Ed) pp. 1–39, John Wiley and Sons, Chichester (1996).

    Google Scholar 

  • Ullas G, Sudhaker SN, Gopalakrishna K et al. Laser Raman spectroscopy: some clinical applications. Curr Sci 77 908–914 (1999).

    Google Scholar 

  • Urlaub E, Popp J, Keifer W et al. FT-Raman investigation of alkaloids in the liana Ancistrocladus heyneanus. Biospectroscopy 4: 113–120 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Venkatakrishna K, Kurien J, Pai KM et al. Optical pathology of oral tissue: a Raman spectroscopy diagnostic method. Curr Sci 80: 665–669 (2000).

    Google Scholar 

  • Wang SY, Hasty CE, Watson PA et al. Analysis of metabolites in aqueous solutions by using laser Raman spectroscopy. Appl Optics 32: 925–929 (1993).

    Article  CAS  Google Scholar 

  • Wen ZQ, Thomas GJ. UV resonance Raman spectroscopy of DNA and protein constituents of viruses: Assignments and cross sections for excitations at 257, 244, 238, and 229 nm. Biopolymers 45: 247–256 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Williams KPJ, Pitt GD, Batchelder DN, Kip BJ. Confocal Raman microspectroscopy using a stigmatic spectrograph and CCD detector. Appl Spectr 48: 232–235 (1994).

    Article  CAS  Google Scholar 

  • Williams KPJP, Pitt GD. Smith,BJE, Whitley A. Use of a rapid scanning stigmatic Raman imaging spectrograph in the industrial environment. J Raman Spectr 25: 131–138 (1994).

    Article  CAS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM, Russell NC. Moisture and habitat structure as regulators for microalgal colonists in diverse Antartic terrestrial habitats. In Ecosystem Processes in Antartic Ice-Free Landscapes. Howard-Williams C, Lyons B, Hawes I (Ed) pp. 77–78, Balkema Press, Rotterdam (1997).

    Google Scholar 

  • Yazdi Y, Ramanujam N, Lotan R et al. Resonance Raman spectroscopy at 257 nm excitation of normal and malignant cultured breast and cervical cells. Appl Spectr 53: 82–85 (1999).

    Article  CAS  Google Scholar 

  • Zhelyaskov VR, Milne ET, Hetke JF, Morris MD. Silicon substrate microelectrode array for surface-enhanced Raman spectroscopy. Appl Spectr 49: 1793–1795 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clarke, S., Goodacre, R. (2003). Raman Spectroscopy for Whole Organism and Tissue Profiling. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics