Skip to main content

Abstract

Genomic and proteomic information is transforming all fields of cancer research. The increased understanding of the genomics and molecular pathology of cancer also provides a framework for designing new therapeutic strategies. The majority of the genes in most genomes are still of unknown function, and many studies on proteomics are attempting to fill this knowledge gap. Since biochemical information flows from DNA to RNA to protein to function, the role of each gene product in metabolism clearly needs to be studied. A recent theoretical study by ter Kuile and Westerhoff (2001) using the methods of Metabolic Control Analysis demonstrated that there is no general quantitative relationship between mRNA levels and function. Thus a comprehensive study of many metabolites together could become invaluable, and several approaches to this are being developed including metabolite target analysis, metabolite profiling, metabolomics and metabolic fingerprinting as described elsewhere in this book (Fiehn, Chapter 11, see also Fiehn, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboagye EO, Dillehay LE, Bhujwalla ZM, Lee D-J. Hypoxic cell cytotoxin tirapazamine induces acute changes in tumor energy metabolism and pH: a 31P magnetic resonance spectroscopy study. Radiat Oncol Investigat 6: 249–254 (1998).

    Article  CAS  Google Scholar 

  • Chung Y-L, Troy H, Banerji U et al. The pharmacodynamic effects of 17-AAG on HT29 xenografts in mice monitored by magnetic resonance spectroscopy. Proc Am Assoc Cancer Res 43: 73 (2002a).

    Google Scholar 

  • Chung Y-L, Troy H, Judson IR et al. The effects of CYC202 on tumors monitored by magnetic resonance spectroscopy. Proc Am Assoc Cancer Res 43: 336 (2002b).

    Google Scholar 

  • Cornish-Bowden A, Cardenas ML. Functional genomics. Silent genes given voice. Nature 409, 571–572 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Dang CV, Semenza GL. Oncogenic alterations of metabolism. Trends Biochem Sci 24: 68–72 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Eigenbrodt E, Reinacher M, Scheefer-Borchel U et al. Double role for pyruvate kinase type M2 in the expansion of phosphometabolite pools found in tumor cells. Crit Rev Oncogenesis 3: 91–115 (1992).

    Google Scholar 

  • Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Compar Fund Genom 2: 155–168 (2001).

    Article  CAS  Google Scholar 

  • Fiehn O. Metabolomics - the link between genotypes and phenotypes. Plant Mol Biol 48: 155–171 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Florian CL, Preece NE, Bhakoo KK, Williams SR. Characteristic metabolic profiles revealed by 1H NMR spectroscopy for three types of human brain and nervous system tumors. NMR Biomed 8: 253–264 (1996).

    Google Scholar 

  • Griffiths JR, Tate AR, Howe FA, Stubbs M. Magnetic resonance spectroscopy of cancer - practicalities of multi-centre trials and early results in non-Hodgkins lymphoma. Eur J Cancer 38: in press (2002a).

    Google Scholar 

  • Griffiths JR, McSheehy PMJ, Robinson SP et al. Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumor deficient in hypoxia-inducible factor-1β (HIF-1β): evidence of an anabolic role for the HIF-1 pathway. Cancer Res 62: 688–695 (2002b).

    PubMed  CAS  Google Scholar 

  • Griffiths JR, Stubbs M. Opportunities for studying cancer by metabolomics: preliminary observations on tumors deficient in hypoxia-inducible factor 1. Adv Enzyme Reg in press (2003).

    Google Scholar 

  • Leach MO, Verrill M, Glaholm J et al. Measurements of human breast cancer using magnetic resonance spectroscopy: a review of clinical measurements and a report of localized 31P measurements of response to treatment. NMR Biomed 11: 314–340 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PH, Dachs GU, Gleadle JM etal. Hypoxia-inducible factor 1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 94: 8104–8109 (1997).

    Article  CAS  Google Scholar 

  • McSheehy PMJ, Robinson SP, Ojugo ASE etal. Carbogen breathing increases 5-fluorouracil uptake and cytotoxicity in hypoxic murine RIF-1 tumors: a magnetic resonance study in vivo. Cancer Res 58: 1185–1194 (1998).

    PubMed  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol 19: 45–50 (2001).

    Article  CAS  Google Scholar 

  • Ronen SM, DiStefano F, McCoy CL et al. Magnetic resonance detects metabolic changes associated with chemotherapy-induced apoptosis. Br J Cancer 80: 1035–1041 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Snell K, Fell DA. Metabolic control analysis of mammalian serine metabolism. Adv Enzyme Reg 30: 13–32 (1989).

    Article  Google Scholar 

  • Stratford IJ, Patterson AV, Dachs GU et al. Hypoxia-mediated gene expression. In Tumor Hypoxia. Vaupel P, Kelleher DK (Ed) pp. 107–113, Wissenschaftliche Verlagsgesellschaft, Stuttgart (1999).

    Google Scholar 

  • Stubbs M, Griffiths JR. Monitoring cancer by magnetic resonance. Br J Cancer 80: 86–94 (1999).

    PubMed  Google Scholar 

  • ter Kuile BH, Westerhoff HV. Transcriptome meets metabolome: hierarchical and metabolic regulation of the glycolytic pathway. FEBS Lett 500: 169–171 (2001).

    Google Scholar 

  • Tate AR, Griffiths JR, Martinez-Perez I et al. Towards a method for automated classification of 1H MRS spectra from brain tumors. NMR Biomed 11: 177–191 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop- PAS heterodimer regulated by cellular 02 tension. Proc Natl Acad Sci USA 92: 5510–5514 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Williams KJ, Telfer BA, Airley RA et al. A protective role for HIF-1 in response to redox manipulation and glucose deprivation: implications for tumorigenesis. Oncogene 21: 282–290 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chung, YL., Stubbs, M., Griffiths, J.R. (2003). Metabolic Profiling in Tumors by In Vivo and In Vitro NMR Spectroscopy. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics