Skip to main content

Can 1H NMR Derived Metabolic Profiles Contribute to Proteomic Analyses?

A Study on Duchenne Muscular Dystrophy

  • Chapter
Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis
  • 313 Accesses

Abstract

In the post genomic era, moving from the mapping of the genome of an organism to understanding its functional genomics is a massive undertaking. Many genes are not under translational control, suggesting that an approach based solely on transcriptomics is inadequate. Furthermore, analysis of the mammalian proteome remains an immense technical challenge. 1H nuclear magnetic resonance (NMR) derived metabolic profiles, however can define the phenotype of a pathology or genetic modification (Oliver, 2001; Gavaghan et al., 2001; Raamsdonk et al., 2001; Nicholson et al., 2002) providing a simple and new pathway into functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahn, AH, Kunkel, LM. The structural and functional diversity of dystrophin. Nature Genet 4: 283–291 (1993).

    Article  Google Scholar 

  • Andrew, ER, Bradbury A, Eades, RG. Removal of dipolar broadening of NMR spectra of solids by specimen rotation. Nature 183: 1802–1803 (1959).

    Article  CAS  Google Scholar 

  • Anderson JL, Head SI, Rae C, Morley JW. Brain function in Duchenne muscular dystrophy. Brain 125:4–13(2002).

    Article  PubMed  CAS  Google Scholar 

  • Aue WP, Bartholdi E, Ernst RR. Two dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys 64: 2229–22 (1976).

    Article  CAS  Google Scholar 

  • Barton-Davis ER, Cordier L, Shoturma DI et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 104: 375–381 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Beckwith-Hall BM, Nicholson JK, Nicholls A et al. Nuclear magnetic resonance spectroscopic and principal component analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol 11: 260–272 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Belle JE, Harris NG, Williams SR, Bhakoo KK. A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15: 37–44 (2002).

    Article  PubMed  Google Scholar 

  • Bessou C, Giugia JB, Franks CJ et al. Mutations in the Caenorhabditis elegans dystrophin-like gene dys-1 lead to hyperactivity and suggest a link with cholinergic transmission. Neurogenetics 2: 61–72 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Blake DJ, Weir A, Newey SE, Davies KE. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol Rev 82: 291–329 (2002).

    PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Xia H et al. Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82: 743–752 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Bullfield G, Siller WG, Wight PA, Moore KJ. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci USA 81: 1189-1192 (1984).

    Article  Google Scholar 

  • Burghes AH, Logan C, Hu X et al. A cDNA clone from the Duchenne/Becker muscular dystrophy gene. Nature 328: 434–437 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Burton EA, Tinsley JM, Holzfeind PJ et al. A second promoter provides an alternative target for therapeutic up-regulation of utrophin in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 96: 14025–14030 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Burton EA, Davies KE. Muscular dystrophy-reason for optimism? Cell 108: 5–8 (2002). Campbell KP. Three muscular dystrophies: loss of cytoskeleton-extracellular matrix linkage. Cell 80: 675–679 (1995).

    Article  Google Scholar 

  • Cheng LL, Ma MJ, Becerra L et al. Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA 94: 6408–6413 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Cordier L, Hack AA, Scott MO et al. Rescue of skeletal muscles of gamma-sarcoglycan- deficient mice with adeno-associated virus-mediated gene transfer. Mol Ther 1: 119–129 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Deconinck N, Tinsley J, De Backer F et al. Expression of truncated utrophin leads to major functional improvements in dystrophin-deficient muscles of mice. Nature Med 3: 1216– 1221 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Dennis CL, Tinsley JM, Deconinck AE, Davies KE. Molecular and functional analysis of the utrophin promoter. Nucleic Acids Res 24: 1646–1652 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Duchenne GBA. De VElectrisation Localisee et son Application a la Therapeutique. 2nd Edn. Balliere et Fils, Paris (1886).

    Google Scholar 

  • Emery AE. Clinical and molecular studies in Duchenne muscular dystrophy. Prog Clin Biol Res 306: 15–28(1989).

    PubMed  CAS  Google Scholar 

  • Eriksson L, Johansson E, Kettaneh-Wold N, Wold S. Introduction to Multi- and Megavariate Data Analysis using Projection Methods (PCA & PLS). Umetrics, Umea, Sweden (1999).

    Google Scholar 

  • Ervasti JM, Ohlendieck K, Kahl SD et al. Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle Nature 345: 315–319 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Even PC, Decrouy A, Chinet A. Defective regulation of energy metabolism in mdx-mouse skeletal muscles. Biochem J 304: 649–654 (1994).

    PubMed  CAS  Google Scholar 

  • Evens T. A bioinformatic approach to the progression of pathology in Duchenne muscular dystrophy. BSc Thesis, Imperial College of Science Technology and Medicine, London, UK (2002).

    Google Scholar 

  • Feener CA, Koenig M, Kunkel LM. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338: 509–511 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Fong P, Turner PR, Denetclaw WF, Steinhardt RA. Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250: 673–676 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Garrod S, Humpfer E, Spraul M et al. High resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla. Magn Reson Med 41:1108–1118(1999).

    Article  PubMed  CAS  Google Scholar 

  • Gavaghan CL, Holmes E, Lenz E et al. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett 484: 169–174 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Gillet B, Doan BT, Verre-Serrie C et al. In vivo 2D 1H NMR of mdx mouse muscle and myoblast cells during fusion: evidence for a characteristic signal of long chain fatty acids. Neuromusc Disord 3: 433–438 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Grady RM, Grange RW, Lau KS et al. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nature Cell Biol 1: 215–220 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Gramolini AO, Angus LM, Schaeffer L et al. Induction of utrophin gene expression by heregulin in skeletal muscle cells: role of the N-box motif and GA binding protein. Proc Natl Acad Sci USA 96: 3223–3227 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Griffin JL, Troke J, Walker LA et al. The biochemical profile of rat testicular tissue as measured by magic angle spinning 1H NMR spectroscopy. FEBS Lett 486: 225–229 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Griffin JL, Williams HJ, Sang E et al. Metabolic profiling of genetic disorders: a multitissue (1)H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem 293: 16–21 (2001a).

    Article  Google Scholar 

  • Griffin JL, Williams HJ, Sang E, Nicholson JK. Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning (1)H NMR spectroscopy. Magn Reson Med 46: 249–255 (2001b).

    Article  PubMed  CAS  Google Scholar 

  • Griffin JL, Walker L, Shore RF, Nicholson JK. High-resolution magic angle spinning 1H NMR spectroscopy studies on the renal biochemistry in the bank vole (Clethrionomys glareolus) and the effects of arsenic (As3+) toxicity. Xenobiotica 31: 377–385 (2001c).

    Article  PubMed  CAS  Google Scholar 

  • Griffin JL, Mann CJ, Scott J et al. Choline containing metabolites during cell transfection: an insight into magnetic resonance spectroscopy detectable changes. FEBS Lett 509: 263–266 (2001d).

    Article  PubMed  CAS  Google Scholar 

  • Gussoni E, Soneoka Y, Strickland CD et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401: 390–394 (1999).

    PubMed  CAS  Google Scholar 

  • Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51: 919–928 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EP, Beggs AH, Koenig M et al. Cross-reactive protein in Duchenne muscle. Lancet 2: 1211–1212 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Holmes E, Nicholson JK, Nicholls AW et al. The identification of novel biomarkers of renal toxicity using automated data reduction techniques and PCA of proton NMR spectra of urine. Chemom Intel Lab Sys 44: 245–255 (1998).

    Article  CAS  Google Scholar 

  • Hu JZ, Rommereim DN, Wind RA. High resolution 1H NMR spectroscopy in rat liver using magic angle turning at a 1 Hz spinning rate. Magn Reson Med 47: 829–836 (2002).

    Article  PubMed  Google Scholar 

  • Huxtable RJ. Physiological actions of taurine. Physiol Rev 72: 101–163 (1992).

    PubMed  CAS  Google Scholar 

  • Jouvensal L, Carlier PG, Bloch G. Evidence for bi-exponential transverse relaxation of lactate in excised rat muscle. Magn Reson Med 41: 624–626 (1991).

    Article  Google Scholar 

  • Kato T, Nishina M, Matsushita K et al. Increased cerebral choline-compounds in Duchenne muscular dystrophy. Neuro Report 8: 1435–1437 (1997).

    CAS  Google Scholar 

  • Kemp GJ, Taylor DJ, Dunn JF et al. Cellular energetics of dystrophic muscle. J Neurol Sci 116:201–206 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Khurana TS, Hoffman EP, Kunkel LM. Identification of a chromosome 6-encoded dystrophin-related protein. J Biol Chem 265: 16717–16720 (1990)

    PubMed  CAS  Google Scholar 

  • Khurana TS, Watkins SC, Chafey P et al. Immunolocalization and developmental expression of dystrophin related protein in skeletal muscle. Neuromuscul Disord 1: 185–194 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Krag TO, Gyrd-Hansen M, Khurana TS. Harnessing the potential of dystrophin-related proteins for ameliorating Duchenne's muscular dystrophy. Acta Physiol Scand 171: 349–58 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Lederfein D, Levy Z, Augier N et al. A 71-kilodalton protein is a major product of Duchenne muscular dystrophy gene in brain and other nonmuscle tissue. Proc Natl Acad Sci USA 89: 5346–5350(1992).

    Article  PubMed  CAS  Google Scholar 

  • Martens H, Naes T. Multivariate Calibration. John Wiley and Sons, Chichester (1989).

    Google Scholar 

  • Mcintosh LM, Garrett KL, Megeney L et al. Regeneration and myogenic cell proliferation correlate with taurine levels in dystrophin- and MyoD-deficient muscles. Anat Rec 252: 311–324 (1998a).

    Article  PubMed  CAS  Google Scholar 

  • Mcintosh LM, Baker RE, Anderson JE. Magnetic resonance imaging of regenerating and dystrophic mouse muscle. Biochem Cell Biol 76: 532–541 (1998b).

    Article  PubMed  CAS  Google Scholar 

  • Menke A, Jockush H. Extent of shock-induced membrane leakage in human and mouse myotubes depends on dystrophin. J Cell Sci 108: 727–733 (1995).

    PubMed  CAS  Google Scholar 

  • Millis K, Maas E, Cory DG, Singer S. Gradient high resolution magic angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn Reson Med 38: 399– 403 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Millis K, Weybright P, Cambell N et al. Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magn Reson Med 41: 257–267 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mokhatarian A, Decrouy A, Chinet A, Even PC. Components of energy expenditure in the mdx mouse model of Duchenne muscular dystrophy. Pfugers Arch 431: 527–532 (1996).

    Article  Google Scholar 

  • Monaco AP, Neve RL, Colletti-Feener C et al. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature 323: 646–650 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Monaco AP, Bertelson CJ, Liechti G et al. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics 2: 90–95 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Muntoni F, Wilson L, Marrosu G et al. A mutation in the dystrophin gene selectively affecting dystrophin expression in the heart. J Cardio Invest 96: 693–699 (1995).

    Article  CAS  Google Scholar 

  • Murray JM, Davies KE, Harper PS et al. Linkage relationship of a cloned DNA sequence on the short arm of the X-chromosome to Duchenne muscular dystrophy. Nature 300: 69–71 (1982).

    Article  PubMed  CAS  Google Scholar 

  • Nagayama K, Kumar K, Wuthrich K, Ernst RR. Experimental techniques of two-dimensional correlated spectroscopy. J Magn Reson 40: 321–334 (1980).

    CAS  Google Scholar 

  • Nakamura A, Harrod GV, Davies E. Activation of calcineurin and stress activated protein kinase/p38-mitogen activated protein kinase in hearts of utrophin-dystrophin knockout mice. Neuromuscul Disord 11: 251–259 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Foxall PJ, Spraul M et al. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem 67: 793–811 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Connelly J, Lindon JC, Holmes E. Metabonomics: a platform for studying drug toxicity and gene function. Nature Rev Drug Discov 1: 153–161 (2002).

    Article  CAS  Google Scholar 

  • Nudel U, Zuk D, Einat P et al. Duchenne muscular dystrophy gene product is not identical in muscle and brain. Nature 337: 76–78 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Oliver S. Guilt by association goes global. Nature 403: 601–603 (2001).

    Article  Google Scholar 

  • Pasternak C, Wong S, Elson EL. Mechanical function of dystrophin in muscle cells J Cell Biol 128: 355–361 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Petrof BJ, Shrager JB, Stedman HH et al. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc Natl Acad Sci USA 90: 3710–3714 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol 19: 45–50 (2001).

    Article  CAS  Google Scholar 

  • Rae C, Scott RB, Thompson CH et al Brain biochemistry in Duchenne muscular dystrophy: a 1H magnetic resonance and neuropsychological study. J Neurol Sci 160: 148–157 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Rafael JA, Tinsley JM, Deconinck AE, Davies KE. Skeletal muscle-specific expression of a utrophin transgene rescues utrophin-dystrophin deficient mice. Nature Genet 19: 79–82 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Rybakova IN, Patel JR, Ervasti JM. The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150: 1209–1214 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Rybakova IN, Patel JR, Davies KE et al Utrophin binds laterally along actin filaments and can couple costameric actin with sarcolemma when overexpressed in dystrophin-deficient muscle. Mol Biol Cell 13: 1512–1521 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Sander M, Chavoshan B, Hams SA et al Functional muscle ischemia in neuronal nitric oxide synthase-deficient skeletal muscle of children with Duchenne muscular dystrophy Proc Natl Acad Sci USA 97: 13818–13823 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sicinnski P, Geneg Y, Ryder-Cook AS et al. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science 244: 1578–1580 (1989).

    Article  Google Scholar 

  • Siminovitch DJ, Ruocco MJ, Olejiniczak ET et al. Anisotropic 2H-nuclear magnetic resonance spin-lattice relaxation in cerebroside- and phospholipid-cholesterol bilayer membranes. Biophys J 54: 373–381 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Thomas GD, Sander M, Lau KS et al Impaired metabolic modulation of alpha-adrenergic vasoconstriction in dystrophin-deficient skeletal muscle. Proc Natl Acad Sci USA 95: 15090–15095(1998).

    Article  PubMed  CAS  Google Scholar 

  • Tinsley JM, Potter AC, Phelps SR et al Amelioration of the dystrophic phenotype of mdx mice using a truncated utrophin transgene. Nature 384: 349–353 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Tinsley J, Deconinck N, Fisher R et al Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nature Med 4: 1441–1444 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Tomlins A, Foxall PJD, Lindon JC et al. High resolution magic angle spinning 1H nuclear magnetic resonance analysis of intact prostatic hyperplastic and tumour tissues. Anal Comm 35: 113–115(1998).

    Article  CAS  Google Scholar 

  • Tracey I. Scott RB, Thompson CH et al Brain abnormalities in Duchenne muscular dystrophy: a 31P magnetic resonance spectroscopy and neuropsychological study. Lancet 345: 1260–1264(1995).

    Article  PubMed  CAS  Google Scholar 

  • Tracey I, Dunn JF, Radda GK. Brain metabolism is abnormal in the mdx mouse model of Duchenne muscular dystrophy. Brain 119: 1039–1044(1996).

    Article  PubMed  Google Scholar 

  • Wang B, Li J, Xiao X. Adeno-associated vims vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci USA 97: 13714–13719(2000).

    Article  PubMed  CAS  Google Scholar 

  • Waters NJ, Garrod S, Farrant RD et al High-resolution magic angle spinning (1)H NMR spectroscopy of intact liver and kidney: optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. Anal Biochem 282: 16–23 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Waters NJ. High resolution magic angle spinning NMR spectroscopy and pattern recognition studies on drug-induced tissue damage. PhD thesis, Imperial College of Science, Technology and Medicine, London, UK (2001).

    Google Scholar 

  • Weller B, Karparti G, Carpenter S. Dystrophin-deficient mdx muscle fibres are preferentially vulnerable to necrosis induced by experimental lengthening contractions J Neurol Sci 100: 9–13 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Weybright P, Millis K, Campbell N et al. Gradient, high-resolution, magic angle spinning 1H nuclear magnetic resonance spectroscopy of intact cells. Magn Reson Med 39: 337–345 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Williams MW, Bloch RJ. Extensive but coordinated reorganisation of the membrane skeleton in myofibres of dystrophic (mdx) mice. J Cell Biol 144: 1259–1270 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Chen A, Johnson CS. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J Magn Reson 115: 260–264 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Griffin, J.L., Sang, E. (2003). Can 1H NMR Derived Metabolic Profiles Contribute to Proteomic Analyses?. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics