Skip to main content

Abstract

Genomics has revolutionized research in biological sciences. The reductionist approach of single-molecule analysis is being slowly, but steadily, replaced by global views of the entire cellular machinery. This started with genetics, which turned to determining complete DNA sequences of organisms and is resulting in global comparisons of these sequences to infer their evolutionary past. With the availability of the first complete genome sequences, however, it became obvious that we know very little about how cells work. The problem is that a large number of genes in any genome have functions that are yet unknown, as judged by the lack of obvious phenotype of the corresponding mutants. These “orphan” genes are also not similar at the DNA or protein sequence levels to other genes of known function. The first complete eukaryotic genome, of the yeast Saccharomyces cerevisiae (Goffeau et al., 1996), perhaps the species for which we know most biochemistry, revealed a staggering 40% of genes to which no function could be assigned. Based on this, Oliver called for a systematic approach to the discovery of gene function (Oliver, 1996), which since became known as functional genomics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Achard F, Vaysseix G, Barillot E. XML, bioinformatics and data integration. Bioinformatics 17: 115–125 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Asimov D, The grand tour: a tool for viewing multidimensional data. SIAMJ Sci Stat Compute 128–143 (1985).

    Google Scholar 

  • Baker PG, Goble CA, Bechhofer S et al. An ontology for bioinformatics applications. Bioinformatics 15: 510–520. (1999).

    Article  PubMed  CAS  Google Scholar 

  • Barillot E, Achard F. XML: A lingua franca for science? Trends Biotechnol 18: 331–333 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Bell CJ, Dixon RA, Farmer AD et al. The Medicago Genome Initiative: a model legume database. Nucleic Acids Res 29: 114–117 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Bestel-Corre G, Dumas-Gaudot E et al. Proteome analysis and identification of symbiosis-related proteins from Medicago truncatula Gaertn by two-dimensional electrophoresis and mass spectrometry. Electrophoresis 23: 122–137. (2002).

    Article  PubMed  CAS  Google Scholar 

  • Brazhnik P, de la Fuente A, Mendes P. Gene networks: how to put the function in genomics. Trends Biotechnol in pressspi (2002).

    Google Scholar 

  • Casari G, De Daruvar A, Sander C, Schneider R. Bioinformatics and the discovery of gene function. Trends Genet 12: 244–245 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Garfinkel D, Higgins J, Hess B. Metabolic control mechanisms. V. A solution for the equations representing interaction between glycolysis and respiration in ascites tumor cells. J Biol Chem 235: 2426–2439 (1960).

    PubMed  CAS  Google Scholar 

  • Cherry JM, Adler C, Ball C et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res 26: 73–79 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Consortium, The Gene Ontology. Creating the gene ontology resource: design and implementation. Genome Res 11: 1425–1433 (2001).

    Article  Google Scholar 

  • Cornish-Bowden A, Cardenas ML. Functional genomics. Silent genes given voice. Nature 409: 571–572 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA. 95: 14863–14868 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Ellis LB, Hershberger CD, Bryan EM, Wackett LP. The University of Minnesota Biocatalysis /Biodegradation Database: emphasizing enzymes. Nucleic Acids Res 29: 340–343 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Fell DA, Sauro HM. Metabolic control analysis by computer — progress and prospects. Biomed Biochim Acta 49: 811–816 (1990).

    PubMed  CAS  Google Scholar 

  • Fiehn O, Kopka J, Dbrmann P et al. Metabolite profiling for plant functional genomics. Nature Biotechnol 18: 1157–1161 (2000).

    Article  CAS  Google Scholar 

  • Fiehn O. Metabolomics — the link between genotypes and phenotypes. Plant Mol Biol 48: 155–171 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Friedman JH. Exploratory projection pursuit. J Am Stat Assoc 82: 249–266 (1987).

    Article  Google Scholar 

  • Gansner ER, North SC. An open graph visualization system and its applications to software engineering. Software Practice Experience 30: 1203–1233 (1999).

    Article  Google Scholar 

  • Garfinkel D, Garfinkel L, Pring M et al. Computer applications to biochemical kinetics. Ann Rev Biochem 39: 473–498 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel D. Computer modeling of metabolic pathways. Trends Biochem Sci 6: 69–71 (1981).

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al. Life with 6000 genes. Science 274: 546–567 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Goto S, Nishioka T, Kanehisa M. LIGAND: chemical database for enzyme reactions. Bioinformatics 14: 591–599 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Hofmeyr JHS. Steady-state modeling of metabolic pathways. A guide for the prospective simulator. Computer Appl Bio sci 2: 5–11 (1986).

    CAS  Google Scholar 

  • Huala E, Dickerman AW, Garcia-Hernandez M et al. The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29: 102–105 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hucka M, Finney A, Sauro HM et al. The Systems Biology Markup Language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics: submitted (2002).

    Google Scholar 

  • Huhman DV, Sumner LW. Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59: 347–360 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC. Simulation of biochemical systems. J Theoret Biol 31: 131–137 (1971).

    Article  CAS  Google Scholar 

  • Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. Nature 407: 651–654 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Juty NS, Spence HD, Hotz HR et al. Simultaneous modelling of metabolic, genetic and product-interaction networks. Briefings Bioinformat 2: 223–232 (2001).

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at Genome Net. Nucleic Acids Res 30: 42–46 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Karp PD, Riley M, Paley SM, Pelligrinitoole A. Ecocyc - An encyclopedia of Escherichia coli genes and metabolism. Nucleic Acids Res 24: 32–39 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Karp PD. An ontology for biological function based on molecular interactions. Bioinformatics 16: 269–285 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kell DB, King RD. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes: the need for machine learning. Trends Biotechnol 18: 93–98 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Kibby MR. Stochastic method for the simulation of biochemical systems on a digital computer. Nature 222: 298–299 (1969).

    Article  PubMed  CAS  Google Scholar 

  • Kose F, Weckwerth W, Linke T, Fiehn O. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics 17: 1198–1208 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U, Keijzers G, Natera SH et al. Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1: 1424–1440 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Mendes P. Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22: 361–363 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Mendes P, Bulmore DL, Farmer AD et al. PathDB: a second generation metabolic database. In Animating the Cellular Map. Hofmeyr JHS, Rohwer JM, Snoep JL (Ed) pp. 207–212, Stellenbosch University Press, Stellenbosch (2000).

    Google Scholar 

  • Mendes P. Emerging bioinformatics for the metabolome. Briefings Bioinformat in press (2002).

    Google Scholar 

  • Meyer RD, Cook D. Visualization of data. Curr Opin Biotechnol 11: 89–96 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Nakao M, Bono H, Kawashima S et al. Genome-scale gene expression analysis and pathway reconstruction in KEGG. Genome Informat 10: 94–103 (1999).

    CAS  Google Scholar 

  • Oliver SG. From DNA sequence to biological function. Nature 379: 597–600 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol 16: 373–378 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Park DJ, Wright BE. METASIM, a general purpose metabolic stimulator for studying cellular transformations. Computer Prog Biomed 3: 10–26 (1973).

    Article  CAS  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nature Biotechnol 19: 45–50 (2001).

    Article  CAS  Google Scholar 

  • Riley M. Functions of the gene products of Escherichia coli. Microbiol Rev 57: 862–952 (1993).

    CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D et al. Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13: 11–29 (2001).

    PubMed  CAS  Google Scholar 

  • Schomburg I, Chang A, Schomburg D. BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30: 47–49 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Kremer S. Adding semantics to genome databases: towards an ontology for molecular biology. Intel Sys Mol Biol 5: 272–275 (1997).

    CAS  Google Scholar 

  • Selkov E, Basmanova S, Gaasterland T et al. The metabolic pathway collection from EMP: the enzymes and metabolic pathways database. Nucleic Acids Res 24: 26–28 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Trethewey RN, Krotzky AJ, Willmitzer L. Metabolic profiling: a Rosetta stone for genomics? Curr Opin Plant Biol 2: 83–85 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Wagner A, Fell DA. The small world inside large metabolic networks. Proc Royal Soc London B 268: 1803–1810 (2001).

    Article  CAS  Google Scholar 

  • Wittig U, De Beuckelaer A. Analysis and comparison of metabolic pathway databases. Briefings Bioinformat 2: 126–142 (2001).

    Article  CAS  Google Scholar 

  • Wixon J. Website review: pathway databases. Compar Fund Genom 2: 391–397 (2001).

    Article  CAS  Google Scholar 

  • Wolf D, Gray CP, de Saizieu A. Visualising gene expression in its metabolic context. Briefings Bioinformat 1: 297–304 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Li, X.J. et al. (2003). Databases and Visualization for Metabolomics. In: Harrigan, G.G., Goodacre, R. (eds) Metabolic Profiling: Its Role in Biomarker Discovery and Gene Function Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0333-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0333-0_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5025-5

  • Online ISBN: 978-1-4615-0333-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics