Skip to main content

2 Characteristics of Oxide-Based Fiber-Reinforced Composites

  • Chapter
  • 218 Accesses

Abstract

Individual material characteristics of the composite constituents are important factors and these strongly influence the success of composite manufacturing as well as composite properties. Hence, prior to composite design and manufacturing, these aspects should be understood well and defined clearly. This chapter looks into the crucial mechanical and thermal material characteristics of a composite and emphasizes composite constituents. Conclusively, it states briefly the current candidate matrix, fiber and interface materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antti, M.-L., 1999. Preparation and Properties of Sapphire/Alumina Long Fibre Composites. PhD-Thesis, Depart. of Mater. and Manuf. Eng. Luleå University of Technology, Sweden, ISSN: 1402–1757.

    Google Scholar 

  • Braue, W., Borath, R., Flucht, F., Goering, J. and Schneider, H., 2001. Failure Analysis of NextelTM 720 Fibers Subjected to High-Temperature Testing: The Role of Intrinsic Fiber Impurities. in “High-Temperature Ceramic Matrix Composites”. eds. W. Krenkel. R. Naslain, H. Schneider. Wiley VCH, Germany, 90–95.

    Google Scholar 

  • Bunsell, A. R. and Berger, M.-H., 1999. Fine Ceramic Fibers. Marcel Dekker Inc., New York., USA.

    Google Scholar 

  • Ceramic Fiber and Coatings, 1998, in Advanced materials for the twenty-first Century. National Materials Advisory Board. Publication NMAB-494. National Academy Press, Washington DC, USA

    Google Scholar 

  • Cinibulk, M.K., 1994, Magnetoplumbite Compounds as a Fiber Coating in Oxide/Oxide Composites, Ceram. Eng. Sci. Proc., 5(5) 721–28.

    Article  Google Scholar 

  • Cinibulk, M. K., Keller, K. A., Mah, T.-I. and Parthasarathy, T. A., 2001. Nextel 610 and 650 fiber reinforced porous alumna-YAG matrix composites, in Ceram. Eng. Sci. Proc., 22(3). 677–685.

    Article  CAS  Google Scholar 

  • Chawla, K.K., 1993, Ceramic Matrix Composites. Chapman and Hall, London.

    Google Scholar 

  • Chawla, K. K., 1998. Composite Materials: Science and Engineering. 2nd Edn, Springer, New York, USA.

    Google Scholar 

  • Chawla, K. K., 2000, Interface engineering in oxide fiber/oxide matrix composites, Int. Mat. Rew., Vol.: 45(5) 165–189.

    Article  CAS  Google Scholar 

  • Chawla, K. K., Schneider, H., Schmücker, M. and Xu, Z. R., 1997, Oxide fiber/oxide matrix composites in “Processing and design issues in high temperature materials”. ed. by N.S. Stoloff, R.H. Jones (Hrsg.), TMS, Warrendale, PA, 235–245.

    Google Scholar 

  • Davis, J. B., Löfvander, J. P. A., Evans, A. G., Bishoff, E. and Emilliani, M. L., 1996. Fiber Coating Concepts for Brittle Matrix Composites, J. Am. Ceram. Soc., 76, 1249–1257.

    Article  Google Scholar 

  • Deléglise, F., Berger, M. H., Jeulin, D. and Bunsel, A R., 2001, Microstructural stability and Room Temperature Mechanical Properties of the Nextel 720 Fiber, J. Europ. Ceram. Soc., 21, 569–580.

    Article  Google Scholar 

  • Doleman, P.A. and Butler, E.G., 1997, The growth of alumina/YAG eutectic fibers by the laser-heated floating zone process. in “Key Engineering Materials”, Vols.: 127–131. pp. 193–202. Trans Tech Publications, Switzerland.

    Google Scholar 

  • Evans, A.G. and Marshall, D. B., 1989, Acta Metall., The Mechan ical Behavior of Ceramic Matrix Composites, 37, 2567–83.

    CAS  Google Scholar 

  • Evans, A.G., Zok, F. W., McMeeking, R.M. and Du, Z.Z., 1996. Models of high-temperature, environmentally assisted embrittlement in ceramic-matrix composites, J. Am. Ceram. Soc., 79(9) 2345–52.

    Article  CAS  Google Scholar 

  • Frost, H. J. and Ashby, M. F., 1982, Deformation-Mechanism Maps — The Plasticity and Creep of Metals and Ceramics, Pergamon, Oxford, UK.

    Google Scholar 

  • Gladysz, G. M. and Chawla, K. K., 1997, On Choosing Interphase Materials for Alumina-Based Composites, Scr. Mater., 37, 1393–1398.

    Article  CAS  Google Scholar 

  • Goering, J., Kanka, B., Steinhauser, U. and Schneider et al., 2000, Thermal barrier coated NextelTM720-fiber/mullite-matrix composites: Their potential for long term high temperature use in gas turbines, Ceram. Eng. Sci. Proc., 24, 613–617.

    Article  Google Scholar 

  • Gupta, V., Yuan, J. and Martinez, D., 1993, Calculation, Measurement and Control of Interface Strength in Composites, J. Am. Ceram. Soc., 76(2) 305–15.

    Article  CAS  Google Scholar 

  • Ha, J.-S. and Chawla, K. K., 1993, Effect of SiC/BN Double Coating on Fiber Pullout in Mullite Fiber/Mullite Matrix Composites, J. Mater. Sci. Lett. 12, 84–86.

    Article  CAS  Google Scholar 

  • Hay, R. S., 1993, Ceram. Eng. Sci. Proc., 14, 922–930.

    Article  CAS  Google Scholar 

  • He, M.-Y and Hutchinson, J. W., 1989, Crack Deflection at an Interface Between Dissimilar Materials, Int. J. Solids Struct., 25, 1053–1067.

    Article  Google Scholar 

  • Herbell, T. P., Hull, D. R. and Garg, A., 1998, Hot Hydrogen Exposure Degradation of the Strength of Mullite, J. Am. Ceram. Soc., 81(4) 910–16.

    Article  CAS  Google Scholar 

  • Holmquit, M., Lundberg, R., Sudre, O., Razzell, A. G., Molliex, L., Benoit, J. and Adlerborn, J., 2000, Alumina/Alumina Composite with a Porous Zirconia Interphase — Processing, Properties and Component Testing, J. Euro. Ceram. Soc., 20(5) 599–606.

    Article  Google Scholar 

  • Lewis, M. H., Cain, M. G., Doleman, P., Razzell, A. G. and Gent, J., 1995, Development of interfaces in oxide and silicate matrix composites, in “High-temperature ceramic-matrix composites II”, (ed. by A. G. Evans and R. Naslain, 41–52, American Ceramic Society, Westerwille, OH, USA.

    Google Scholar 

  • Lundberg, R., Pejryd, L., Butler, E., Ekelund, M. and Nygren, M., 1993, Proc. Int. Conf. HTCMC-1, ed. by R. Naslain, et al., 1151–1158, Woodhead Publ., Cambridge, UK.

    Google Scholar 

  • Marshall, D.B. and Evans, A.G., 1985, Failure mechanisms in ceramic-fiber/ceramic-matrix composites, J. Am. Ceram. Soc., 68, 225–231.

    Article  CAS  Google Scholar 

  • Milz, C., 2000, Mechanische und Mikrostrukturelle Charakterisierung einer aluminosilikatischen Faser für den Hochtemperatureinsatz in Verbundwerkstoffen, Shaker Verlag, Aachen, Germany (PhD Thesis)

    Google Scholar 

  • Morgan, P. E. and Marshall, 1992, D. B., US Pat. 5137852, US Patent Office, Washington, DC.

    Google Scholar 

  • Morgan, P.E.D., Marshall, D.B. and Housley, R.M., 1995, High Temperature Stability of Monazite-Alumina Composites, Mater. Sci. Eng., A, A195, 215–22.

    CAS  Google Scholar 

  • Morrell, R., 1985, An introduction for the engineer and designer, in “Handbook of properties of technical & engineering ceramics, Part I”, National Physical Laboratory, Her Majesty’s Stationary Office, London.

    Google Scholar 

  • Naslain, R., 1999, Fibers from solid precursor phases in: Advanced Inorganic Fibers: Processes Structures, Properties, Applications, ed. by F. T. Wallenberger, Kluwer Academic Publ., Dordrecht/Boston/London.

    Google Scholar 

  • Okada, K., Motohashi, T., Kameshima, Y. and Yasumori, A., 2000, Sol-gel synthesis of YAG/Al2O3 long fibers from water solvent systems, J. Euro. Ceram. Soc., 20(5), 561–567.

    Article  CAS  Google Scholar 

  • Patankar, S. N., Venkatesh, R. and Chawla, K. K., 1991, Effect of Tin Dioxide Coating on Tensile Strength of Alumina Fibers, Scr. Metall., 25, 361–366.

    Article  CAS  Google Scholar 

  • Petry, M.D. and Mah, T-I, 1999, Effect of thermal exposures on the strengths of NextelTM 550 and 720 filaments, J. Am. Ceram. Soc., 82(19) 2801–807.

    CAS  Google Scholar 

  • Saruhan, B., Bartsch, M., Schmücker, M., Schneider, H., Nubian, K., Wahl, G., 2001, Effect of Interphase Characteristics on Long-Term Durability of Oxide-Based Fiber-Reinforced Composites, in “Processing of fibers and composites”, Composites-Part A Applied Science and Manufacturing, ed. by K.K. Chawla, A. Mortensen, J.-A. E. Månson, Vol.: 32A, 1095–1104.

    Google Scholar 

  • Sayir, A., Greer III, L.C., Goldsby, J. C. and Oberle, L.G., 1994, Laser speckle micro-strain measurements on small diameter fibers, Ceram. Eng. Sci. Proc., 18, 397–410.

    Article  Google Scholar 

  • Sayir, H., Sayir, A. and Lagerlof, K.P., 1993, Temperature dependent brittle fracture of undoped and impurity doped sapphire fibers, Ceram. Eng. Sci. Proc., 14(7–8) 581.

    Article  CAS  Google Scholar 

  • Schmücker, M. Schneider, H., Chawla, K.K., Xu, Z.R. and Ha, J-S, 1997, Thermal degradation of fiber coatings in mullite fiber reinforced mullite composites, J. Am. Ceram. Soc., 80, 2136–41.

    Article  Google Scholar 

  • Schmücker, M., Flucht, F. and Schneider, H., 1996, High temperature behavior of polycrystalline aluminosilicate fibers with mullite bulk composition, J. Euro. Ceram. Soc., 16, 281–85.

    Article  Google Scholar 

  • Schmücker, M., Flucht, F. and Schneider, H., 2001, Temperature Stability of 3M NextelTM610, 650 and 720 Fibers-A Microstructural Study. in “High-Temperature Ceramic Matrix Composites”, eds. W. Krenkel. R. Naslain, H. Schneider, Wiley VCH, 73–78.

    Google Scholar 

  • Schneider, H., Okada, K. Pask, J. A., 1994. Mullite and mullite ceramics, John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Rau, M., McCullough, C., Sorenson, J. P., Tompkins, T. L. Wilson, D. M., 2001, 3M(TM) NextelTM ceramic fibers for metal matrix, ceramic matrix and polymer matrix composites, presented at the conference “Verbundwerkstoffe und Werkstoffverbunde” in Chemnitz, Germany, 5.–7. Sept. 2001.

    Google Scholar 

  • Wallenberger, F.T., 1999, Advanced Inorganic Fibers: Processes Structures, Properties, Applications, Kluwer Academic Publ., Dordrecht, Boston, London.

    Book  Google Scholar 

  • Wilson, D. M., Lueneburg, D.C. and Leider, S.L., 1993. High temperature properties of NextelTM610 and alumina-based nanocomposite fibers, Ceram. Eng. Sci. Proc. 14(7–8), 609–621.

    Article  CAS  Google Scholar 

  • Wilson D. M., 1997, Statistical Tensile Strength of NextelTM610 and NextelTM720 Fibers, J. Mater. Sci., 32, 2535–42.

    Article  CAS  Google Scholar 

  • Wilson, D. M. and Visser, L. R., 2000, NextelTM650 Ceramic Oxide Fibers: New Alumina-Based Fiber for High Temperature Composite Reinforcement, Ceram. Eng. Sci. Proc., 21(4), 363–373.

    Article  CAS  Google Scholar 

  • Xu, Z.R and Chawla, K. K., 1993, Effect of SiC/BN double coating on fiber pullout in mullite fiber/mullite matrix composites, J. Mater. Sci. Lett., 12, 84–86.

    Article  Google Scholar 

  • Yang, J-M., Jeng, S.M. and Chang, S., 1996, Fracture behavior of directionally solidified Y3Al5O12/Al2O3 eutectic fiber. J. Am. Ceram. Soc., 79(5) 1218–22.

    Article  CAS  Google Scholar 

  • Yang. J-M., 2001. Single crystal oxide and oxide/oxide eutectic fibers for high temperature composites. in “Int. Journal of Materials & Product Technology”, ed. by S. Ochiai, Y. Kagawa and T. Kobayashi. Vol.: 16. Nos. 1–3. pp. 12–21.

    Google Scholar 

  • Yosikawa, A., Epelbaum, B. M., Hasegawa. K., Durbin. S. D. and Fukuta, T., 1999. Microstructure in oxide eutectic fibers grown by a modified micro-pulling-down method, J. of Crystal Growth, 205[3], 305.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saruhan, B. (2003). 2 Characteristics of Oxide-Based Fiber-Reinforced Composites. In: Oxide-Based Fiber-Reinforced Ceramic-Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0319-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0319-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7349-6

  • Online ISBN: 978-1-4615-0319-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics