Skip to main content

Extracting Individual Tree Information

A Survey of Techniques for High Spatial Resolution Imagery

  • Chapter
Remote Sensing of Forest Environments

Abstract

Forest management is a dynamic science with evolving information requirements. Remote sensing, as an important means of acquiring forest information, must therefore adapt to meet changing management needs. In parallel with a need for adaptation are ongoing advancements in remote sensing technology and associated interpretation tools that provide new opportunities to meet the information demands of forest and resource managers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew, R. M., Trotter, C. M., Höck, B. K., & Dunningham, A. (1999). Inventory of plantation forests using crown delineation techniques. Fourth International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing, 131–138. Ottawa, Ontario, Canada.

    Google Scholar 

  • Asada, H., & Brady, M. (1986). The curvature primal sketch. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 3–14.

    Article  Google Scholar 

  • Bliss, J. C, Bonnicksen, T. M., & Mace, T. H. (1980). Computer-aided classification of forest cover types from small scale aerial photography. Environmental Management, 4, 499–510.

    Article  Google Scholar 

  • Bolduc, P., Lowell, K., & Edwards, G. (1999). Automated estimation of localised forest volume from large-scale aerial photographs and ancillary cartographic information in a boreal forest. International Journal of Remote Sensing, 20, 3166–3624.

    Article  Google Scholar 

  • Brandtberg, T., & Walter, F. (1998). Automated delineation of individual tree crowns in high spatial resolution aerial images by multiple-scale analysis. Machine Vision and Applications, 11, 64–73.

    Article  Google Scholar 

  • Brandtberg, T., & Walter, F. (1999). An algorithm for delineation of individual tree crowns in high spatial resolution aerial images using curved edge segments at multiple scales. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 41–54. Victoria, British Columbia, Canada.

    Google Scholar 

  • Cohen, W. B., Spies, T. A., & Bradshaw, G. A. (1990). Semivariograms of digital imagery for analysis of conifer canopy structure. Remote Sensing of Environment, 34,167–178.

    Article  Google Scholar 

  • Coops, N. C. & Catling, P. C. (1997). Predicting the complexity of habitat in forests from airborne videography for wildlife management. International Journal of Remote Sensing, 18,2677–2686.

    Article  Google Scholar 

  • Coops, N. C, Stone, C. S., Culvenor, D. S., & Old, K. (2001). Forest vitality and health: Indicators of changes in fundamental ecological processes in forests based on eucalypt crown condition index (ECCI). Report to Forestry and Wood Products Research and Development Corporation (FWRPDC) PN99.814, CSIRO Forestry and Forest Products, Canberra, ACT, Australia.

    Google Scholar 

  • Culvenor, D. S. (2000,). Development of a Tree Delineation Algorithm for Application to High Spatial Resolution Digital Imagery of Australian Native Forest. Ph.D. Thesis. The University of Melbourne, Australia.

    Google Scholar 

  • Culvenor, D. S. (2002). TIDA: An algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Computers & Geosciences, 28, 33–44.

    Article  Google Scholar 

  • Culvenor, D. S., Coops, N. C, Preston, R., & Tolhurst, K. G. (1999). A spatial clustering approach to automated tree crown delineation. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 67–80. Victoria, British Columbia.

    Google Scholar 

  • Curran, P. J. (1988). The semivariogram in remote sensing: An introduction. Remote Sensing of Environment, 24, 493–507.

    Article  Google Scholar 

  • Dikshit, O. (1996). Textural classification for ecological research using ATM images. International Journal of Remote Sensing, 17, 887–915.

    Article  Google Scholar 

  • Dralle, K., & Rudemo, M. (1996). Stem number estimation by kernel smoothing of aerial photos. Canadian Journal of Forest Research, 26, 1228–1236.

    Article  Google Scholar 

  • Dube, P., Hay, G., & Marceau, D. (1999). Voronoi diagrams, extended area stealing interpolation, and tree crown recognition: a fuzzy approach. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 115–126. Victoria, British Columbia.

    Google Scholar 

  • Estes, J. E., & Sailer, C. (1986). Applications of artificial intelligence techniques to remote sensing. The Professional Geographer, 38,133–141.

    Article  Google Scholar 

  • Fournier, R. A., Edwards, G., & Eldridge, N. R. (1995). A catalogue of potential spatial discriminators for high spatial resolution digital images of individual crowns. Canadian Journal of Remote Sensing, 21, 285–298.

    Google Scholar 

  • Gemmell, F. (1998). An investigation of terrain effects on the inversion of a forest reflectance model. Remote Sensing of Environment, 65, 155–169.

    Article  Google Scholar 

  • Gougeon, F. A. (1995a). Comparison of possible multispectral classification schemes for tree crowns individually delineated on high spatial resolution MEIS images. Canadian Journal of Remote Sensing, 21, 1–9.

    Google Scholar 

  • Gougeon, F. A. (1995b). A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution digital images. Canadian Journal of Remote Sensing, 21, 274–284.

    Google Scholar 

  • Gougeon, F. A. (1999). Automatic individual tree crown delineation using a valley-following algorithm and a rule-based system. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 11–24. Victoria, British Columbia.

    Google Scholar 

  • Guindon, B. (2000). A framework for the development and assessment of object recognition modules from high-resolution satellite images. Canadian Journal of Remote Sensing, 26, 334–348.

    Google Scholar 

  • Häme, T., Holm, M., Rautakorpi, S., & Parmes, E. (1999). Forestry applications in high resolution imagery. Kanellopoulos, I., Wilkinson, G. G., & Moons, T. (Eds.). Machine Vision and Advanced Image Processing in Remote Sensing, 111–120. Springer-Verlag, Berlin, Germany.

    Chapter  Google Scholar 

  • Harries, D., Curnow, W., & Davey, S. (Eds.). (1993). Remote Sensing for Forest Management, Bureau of Resource Science Working Paper. Bureau of Resource Sciences, Canberra.

    Google Scholar 

  • Harrison, B. A., & Jupp, D. L. B. (1990). Introduction to Remotely Sensed Data. CSIRO Australia, Canberra, Australia.

    Google Scholar 

  • Hay, G. J., Niemann, K. O., & McLean, G. F. (1996). An object-specific image-texture analysis of H-resolution forest imagery. Remote Sensing of Environment, 55,108–122.

    Article  Google Scholar 

  • Hosking, G. P. (1994). Evaluation of forest canopy damage using airborne video. Resource Technology’94, 286–293. Melbourne, Australia.

    Google Scholar 

  • Hyyppä, J., Hyyppä H., Inkinen, M., Engdahl, M., Linko, S., & Zhu, Y. (2000). Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128, 109–120.

    Article  Google Scholar 

  • Kasischke, E. S., Melack, J. M., & Dobson, C. M. (1997). The use of imaging radars for ecological applications — a review. Remote Sensing of Environment, 59, 141–156.

    Article  Google Scholar 

  • Key, T., Warner, T. A., McGraw, J. B., & Fajvan, M. (2001). A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sensing of Environment, 75,100–112.

    Article  Google Scholar 

  • Larsen, M. 1997. Crown modelling to find tree top positions in aerial photographs. Proceedings of the Third International Airborne Remote Sensing Conference and Exhibition, II, 428–435. Copenhagen, Denmark.

    Google Scholar 

  • Larsen, M. (1999). Finding an optimal match window for Spruce top detection based on an optical tree model. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 55–66. Victoria, British Columbia.

    Google Scholar 

  • Larsen, M., & Rudemo, M. (1997). Using ray-traced templates to find individual trees in aerial photos. Proceedings of the 10th Scandanavian Conference on Image Analysis, 1007–1014. Lappeenranta, Finland.

    Google Scholar 

  • Larsen, M., & Rudemo, M (1998). Optimising templates for finding trees in aerial photographs. Pattern Recognition Letters, 19, 1153–1162.

    Article  MATH  Google Scholar 

  • Leckie, D., Burnett, C, Nelson, T., Jay, C, Walsworth, N., Gougeon, F., & Cloney, E. (1999). Forest parameter extraction through computer-based analysis of high resolution imagery. Fourth International Airborne Remote Sensing Conference and Exhibition/21 st Canadian Symposium on Remote Sensing. Ottawa, Ontario, Canada.

    Google Scholar 

  • Leckie, D. G., Yaun, X., Ostaff, D. P., Piene, H., & MacLean, D. A. (1992). Analysis of high spatial resolution multispectral MEIS imagery for Spruce Budworm damage assessment on a single tree basis. Remote Sensing of Environment, 40, 125–136.

    Article  Google Scholar 

  • Levesque, J., & King, D. J. (1996). Semivariance analysis of tree crown structure in airborne digital camera imagery. 26th International Symposium on Remote Sensing of Environment: Information Tools for Sustainable Development, 275–278 Vancouver, BC, Canada.

    Google Scholar 

  • Li, X., & Strahler, A. H. (1992). Geometric-optical bidirectional reflectance modelling of the discrete crown vegetation canopy: effect of crown shape on mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30, 276–291.

    Article  Google Scholar 

  • Light, D. L. (1996). Film cameras or digital sensors? The challenge ahead for aerial imaging. Photogrammetric Engineering & Remote Sensing, 62, 285–291.

    Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1987) Remote sensing and image interpretation (2nd ed.). John Wiley & Sons, Singapore.

    Google Scholar 

  • Lowell, K. (1998). Evaluation of a moving-window algorithm for detecting individual tree stems from scanned aerial photographs in Victoria’s eucalypt forests. Australian Forestry, 61,226–234.

    Google Scholar 

  • Meyer, P., Staenz, K., & Itten, K. I. (1996). Semi-automated procedures for tree species identification in high spatial resolution data from digitized colour infrared-aerial photography. ISPRS Journal of Photogrammetry & Remote Sensing, 51, 5–16.

    Article  Google Scholar 

  • Myers, B. J. (1982). Shadowless aerial photography for vegetation studies — a review of benefits and limitations. Australian Forestry, 45, 142–151.

    Google Scholar 

  • Niemann, O., Adams, S., & Hay, G. (1999). Automated tree crown identification using digital orthophoto mosaics. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 105–114. Victoria, British Columbia.

    Google Scholar 

  • O’Hara, K. L., Latham, P. A., & Valappil, N. I. (1995). Parameters for describing stand structure. S4.01 IUFRO 20th World Congress on Recent Advances in Forest Mensuration and Growth and Yield Research, 134–145. Tampere, Finland.

    Google Scholar 

  • Pelz, D. R. (1993). National forest inventories: Past developments and future prospects. Forest Resource Inventory and Monitoring and Remote Sensing Technology, Proceedings of the IUFRO Centennial Meeting, 11–18. Berlin.

    Google Scholar 

  • Pinz, A. (1999a). Tree isolation and species classification. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 127–140. Victoria, British Columbia.

    Google Scholar 

  • Pinz, A. (1999b). Austrian forest inventory system. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 375–386. Victoria, British Columbia.

    Google Scholar 

  • Pollock, R. (1996). The Automatic Recognition of Individual Trees in Aerial Images of Forests Based on a Synthetic Tree Crown Image Model. Ph.D. Thesis, Department of Computer Science, University of British Columbia, Canada.

    Google Scholar 

  • Pollock, R. (1999). Individual tree recognition based on a synthetic tree crown image model. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 25–34. Victoria, British Columbia.

    Google Scholar 

  • Preston, R. (1997). Monitoring of forest species and structure using Digital Multi-Spectral Video (DMSV) and expert spatial models .Sustainable Forest Management Technical Report: Assessing and monitoring condition of native forests in Queensland — some recent developments in airborne and satellite remote sensing. Resource Sciences Centre, Brisbane, Australia.

    Google Scholar 

  • Preston, R. (1999). Eastern Australia High Resolution Remote Sensing Baseline Mapping Project: Interim Report, Image acquisition and exploratory modelling.

    Google Scholar 

  • Preto, G. (1992). Past and present of inventorying and monitoring systems. Forest Resource Inventory and Monitoring and Remote Sensing Technology, Proceedings of the IUFRO Centennial Meeting, 1–10. Berlin.

    Google Scholar 

  • Päivinen, R. (2001). How reliable is a satellite forest inventory. Silva Fennica, 35, 125–127.

    Google Scholar 

  • Quackenbush, L. J., Hopkins, P. F., & Kinn, G. J. (2000). Developing forestry products from high resolution digital aerial imagery. Photogrammetric Engineering & Remote Sensing, 66, 1337–1346.

    Google Scholar 

  • Ryherd, S., & Woodcock, C. (1996). Combining spectral and texture data in the segmentation of remotely sensed images. Photogrammetric Engineering & Remote Sensing, 62, 181–194.

    Google Scholar 

  • Sali, E., & Wolfson, H. (1992). Texture classification in aerial photographs and satellite data. International Journal of Remote Sensing, 13, 3395–3408.

    Article  Google Scholar 

  • Schieler, K. (1992). Contribution of a permanent forest inventory to a national information system from the Austrian point of view. Forest Resource Inventory and Monitoring and Remote Sensing Technology, Proceedings of the IUFRO Centennial Meeting, 67–70. Berlin.

    Google Scholar 

  • Sheng, Y., Gong, P., & Biging, G. S. (2001). Model-based conifer-crown surface reconstruction from high resolution aerial images. Photogrammetric Engineering & Remote Sensing, 67, 957–965.

    Google Scholar 

  • Smith, N. J., Borstad, G. A., Hill, D. A., & Kerr, R. C. (1991). Using high-resolution airborne spectral data to estimate forest leaf area and stand structure. Canadian Journal of Forest Research, 21, 1127–1132.

    Article  Google Scholar 

  • St-Onge, B. A., & Cavayas, F. (1997). Automated forest structure mapping from high resolution imagery based on directional semivariogram estimates. Remote Sensing of Environment, 61, 82–95.

    Article  Google Scholar 

  • Tahu, G. J., Baker, J. C, & O’Connell, K. M. (1998). Expanding global access to civilian and commercial remote sensing data: implications and policy issues. Space Policy, 14, 179–188.

    Article  Google Scholar 

  • Ticehurst, C, Lymburner, L., Held, A., Palylyk, C, Martindale, D., Sarosa, W., Phinn, S., & Stanford, M (2001). Mapping tree crowns using hyperspectral and high spatial resolution imagery. Proceedings of the Third International Conference on Geospatial Information in Agriculture and Forestry. Denver, Colorado.

    Google Scholar 

  • Townshend, J., & Justice, C. (1981). Information extraction from remotely sensed data: a user view. International Journal of Remote Sensing, 2, 313–329.

    Article  Google Scholar 

  • Uuttera, J., Haara, A., Tokola, T., & Maltama, M. (1998). Determination of the spatial distribution of trees from digital aerial photographs. Forest Ecology and Management,110, 275–282.

    Article  Google Scholar 

  • Walsworth, N. A., & King, D. J. (1999a). Comparison of two tree apex delineation techniques. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 93–104. Victoria, British Columbia.

    Google Scholar 

  • Walsworth, N. A., & King, D. J. (1999b). Image modelling of forest changes associated with acid mine drainage. Computers & Geosciences, 25, 567–580.

    Article  Google Scholar 

  • Wang, L., & He, D. C. (1990). A new statistical approach for texture analysis. Photogrammetric Engineering & Remote Sensing.569 61–66.

    Google Scholar 

  • Warner, T. A., Yeol Lee, J., & McGraw, J. B. (1999). Delineation and identification of individual trees in the eastern deciduous forest. Proceedings Automated Interpretation of High Spatial Resolution Digital Imagery for Forestry, 81–92. Victoria, British Columbia.

    Google Scholar 

  • Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote Sensing of Environment, 21, 311–332.

    Article  Google Scholar 

  • Woodcock, C. E., Strahler, A. H., & Jupp, D. L. B. (1988). The use of variograms in remote sensing: II. Real digital images. Remote Sensing of Environment, 25, 349–379.

    Article  Google Scholar 

  • Wu, S. T. (1988). Utility of the C band RADAR scatterometer and video system for determination of key tree canopy parameters. First Workshop on Videography, z128–135. Falls Church, Virginia.

    Google Scholar 

  • Wulder, M., Niemann, K. O., & Goodenough, D. G. (2000). Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sensing of Environment, 73, 103–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Culvenor, D.S. (2003). Extracting Individual Tree Information. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics