Per-Pixel Analysis of Forest Structure

Vegetation Indices, Spectral Mixture Analysis and Canopy Reflectance Modeling
  • Gregory P. Asner
  • Jeffrey A. Hicke
  • David B. Lobell

Abstract

For more than 30 years, analysis of image pixels has been central to the interpretation of multi-spectral remote sensing imagery of the Earth and celestial bodies. In the context of optical remote sensing of terrestrial ecosystems, “per-pixel analysis” focuses on the process of estimating biophysical and geophysical properties from the radiation reflected off materials found on the land surface. This reflected radiation occurs in five optical domains: spectral, angular, temporal, spatial and polarization. These optical domains are not independent, yet they are often considered individually during the development and use of per-pixel analytical techniques. The polarization domain is not covered in this Chapter. Some studies indicate the potential importance of polarization for estimating properties of plant foliage and canopies (e.g., Rondeaux and Herman 1991), and those were reviewed by Vanderbilt et al. (1991).

Keywords

Biomass Clay Cellulose Chlorophyll Lignin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abuelgasim, A. A., & Strahler, A. H. (1994). Modeling bidirectional radiance measurements collected by the Advanced Solid-State Array Spectroradiometer (ASAS) Over Oregon Transect conifer forests. Remote Sensing of Environment, 47,261–275.CrossRefGoogle Scholar
  2. Adams, J. B., Sabol, D. E., Kapos, V., Almeida, R., Roberts, D. A., Smith, M. O., & Gillespie, A. R. (1995). Classification of multispectral images based on fractions of endmembers — Application to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52, 137–154.CrossRefGoogle Scholar
  3. Adams, J. B., Smith, M. O., & Johnson, P. E. (1986). Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander I Site. Journal of Geophysical Research, 91, 8098–8112.CrossRefGoogle Scholar
  4. Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 134–153.CrossRefGoogle Scholar
  5. Asner, G. P. (2000). Contributions of multi-view angle remote sensing to land-surface and biogeochemical research. Remote Sensing Reviews, 18, 137–162.CrossRefGoogle Scholar
  6. Asner, G. P., Braswell, B. H., Schimel, D. S., & Wessman, C. A. (1998). Ecological research needs from multiangle remote sensing data. Remote Sensing of Environment, 63, 155–165.CrossRefGoogle Scholar
  7. Asner, G. P., Keller, M, Pereira, R., Zweede, J. C, & Silva, J. N. (2002). Forest canopy damage and closure following selective logging in Amazonia: Integrating satellite and field studies. Ecological Applications.Google Scholar
  8. Asner, G. P., & Lobell, D. B. (2000). A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 74, 99–112.CrossRefGoogle Scholar
  9. Asner, G. P., Townsend, A. R., & Braswell, B. H. (2000). Satellite observations of El Niño effects on Amazon forest phenology and productivity. Geophysical Research Letters.Google Scholar
  10. Asner, G. P., & Vitousek, P. M. Biochemical versus biophysical sources of variation in Hawaiian tropical forest reflectance spectroscopy. Remote Sensing of Environment, in review.Google Scholar
  11. Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote Sensing Reviews, 13, 95–120.CrossRefGoogle Scholar
  12. Baret, F., Clevers, J. G. P. W., & Steven, M. D. (1995). The robustness of canopy gap fraction estimates from red and near-infrared reflectances: a comparison of approaches. Remote Sensing of Environment, 54, 141–151.CrossRefGoogle Scholar
  13. Bateson, A., & Curtiss, B. (1996). A method for manual endmember selection and spectral unmixing. Remote Sensing of Environment, 55, 229–243.CrossRefGoogle Scholar
  14. Bateson, C. A., Asner, G. P., & Wessman, C. A. (2000). Endmember bundles: A new approach to incorporating endmember variability into spectral mixture analysis. IEEE Transactions On Geoscience and Remote Sensing, 38, 1083–1094.CrossRefGoogle Scholar
  15. Ben-Dor, E., Irons, J. R., & Epema, G. F. (1999). Soil reflectance, in Remote Sensing for the Earth Sciences. Rencz, A. N. (Ed.). Manual of Remote Sensing, 111–188. Wiley & Sons, New York, USA.Google Scholar
  16. Bicheron, P., Leroy, M., Hautecoeur, O., & Breon, F. M. (1997). Enhanced discrimination of boreal forest covers with directional reflectances from the airborne polarization and directionality of Earth reflectances (POLDER) instrument. Journal of Geophysical Research, 102,29517–29528.CrossRefGoogle Scholar
  17. Borel, C. C, & Gerstl, S. A. W. (1994). Nonlinear spectral mixing models for vegetative and soil surfaces. Remote Sensing of Environment, 47, 403–416.CrossRefGoogle Scholar
  18. Botta, A., Viovy, N., Ciais, P., Friedlingstein, P., & Monfray, P. (2000). A global prognostic scheme of leaf onset using satellite data. Global Change Biology, 6, 709–725.CrossRefGoogle Scholar
  19. Brown, L., Chen, J. M, Leblanc, S. G., & Cihlar, J. (2000). A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote Sensing of Environment, 71, 16–25.CrossRefGoogle Scholar
  20. Chelle, M, & Andrieu, B. (1996). Radiative models for architectural modeling. Agronomie, 19,225–240.CrossRefGoogle Scholar
  21. Chen, J. M., & Cihlar, J. (1996). Retrieving leaf area index of boreal conifer forests using landsat TM images. Remote Sensing of Environment 55, 153–162.CrossRefGoogle Scholar
  22. Chen, J. M, Li, X., Nilson, T., & Strahler, A. (2000). Recent advances in geometrical optical modelling and its applications. Remote Sensing Reviews, 18, 227–262.CrossRefGoogle Scholar
  23. Cochrane, M. A., & Souza, C. M. (1998). Linear mixture model classification of burned forests in the Eastern Amazon. International Journal of Remote Sensing, 19, 3433–3440.CrossRefGoogle Scholar
  24. Coops, N., Delahaye, A., & Pook, E. (1997). Estimation of eucalypt forest leaf area index on the south coast of New South Wales using Landsat MSS data. Australian Journal of Botany, 45, 757–769.CrossRefGoogle Scholar
  25. Curran, P. J. (1980). Multispectral remote sensing of vegetation amount. Progress in Physical Geography, 4, 315–341.MathSciNetCrossRefGoogle Scholar
  26. Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30, 271–278.CrossRefGoogle Scholar
  27. Dawson, T. P., Curran, P. J., & Plummer, S. E. (1998). LIBERTY: Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sensing of Environment, 65, 50–60.CrossRefGoogle Scholar
  28. Deering, D. W., Eck, T. F., & Banerjee, B. (1999). Characterization of the reflectance anisotropy of three boreal forest canopies in spring-summer. Remote Sensing of Environment, 67, 205–229.CrossRefGoogle Scholar
  29. DeFries, R. S., Hansen, M., Townshend, J. R. G., & Sohlberg, R. (1998). Global land cover classifications at 8 km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers. International Journal of Remote Sensing, 19, 3141–3168.CrossRefGoogle Scholar
  30. Diner, D. J., Beckert, J. C, Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. V., Ackerman, T. P., Davies, R., Gerstl, S. A. W., Gordon, H. R., Muller, J. P., Myneni, R. B., Sellers, P. J., Pinty, B., & Verstraete, M. M. (1998). Multi-angle Imaging SpectroRadiometer (MISR): Instrument description and experiment overview. IEEE Transactions On Geoscience and Remote Sensing, 36, 1072–1087.CrossRefGoogle Scholar
  31. Disney, M. I., Lewis, P., & North, P. R. J. (2000). Monte Carlo ray tracing in optical canopy reflectance modelling Remote Sensing Reviews, 18, 163–196.CrossRefGoogle Scholar
  32. Eklundh, L., Harrie, L., & Kuusk, A. (2001). Investigating relationships between Landsat ETM plus sensor data and leaf area index in a boreal conifer forest. Remote Sensing of Environment, 78, 239–251.CrossRefGoogle Scholar
  33. Foody, G. M., Lucas, R. M., Curran, P. J., & Honzak, M. (1997). Non-linear mixture modelling without end-members using an artificial neural network. International Journal of Remote Sensing, 18, 937–953.CrossRefGoogle Scholar
  34. Fung, T., & Siu, W. (2000). Environmental quality and its changes, an analysis using NDVI. International Journal of Remote Sensing, 21,1011–1024.CrossRefGoogle Scholar
  35. Gao, B. C, & Li, R. R. (2000). Quantitative improvement in the estimates of NDVI values from remotely sensed data by correcting thin cirrus scattering effects. Remote Sensing of Environment, 74, 494–502.MathSciNetCrossRefGoogle Scholar
  36. Gastellu-Etchegorry, J. P., Guillevic, P., Zagolski, F., Demarez, V., Trichon, V., Deering, D., & Leroy, M. (1999). Modeling BRF and radiation regime of boreal and tropical forests: I. BRF. Remote Sensing of Environment, 68, 281–316.CrossRefGoogle Scholar
  37. Gates, D. M. (1970). Physical and physiological properties of plants. Remote Sensing with Special Reference to Agriculture and Forestry, 224–252. National Academy of Science, Washington, D.C., USA.Google Scholar
  38. Gates, D. M., Keegan, H. J., Schleter, J. C, & Wiedner, V. R. (1965). Spectral properties of plants, Applied Optics, 4, 11–20.CrossRefGoogle Scholar
  39. Gausman, H. W. (1983). Visible-light reflectance, transmittance, and absorptance of differently pigmented cotton leaves. Remote Sensing of Environment, 13,233–238.CrossRefGoogle Scholar
  40. Gemmell, F. (1999). Estimating conifer forest cover with Thematic Mapper data using reflectance model inversion and two spectral indices in a site with variable background characteristics. Remote Sensing of Environment, 69, 105–121.CrossRefGoogle Scholar
  41. Gemmell, F. (2000). Testing the utility of multi-angle spectral data for reducing the effects of background spectral variations in forest reflectance model inversion. Remote Sensing of Environment, 72, 46–63.CrossRefGoogle Scholar
  42. Gemmell, F., & Varjo, J. (1999). Utility of reflectance model inversion versus two spectral indices for estimating biophysical characteristics in a boreal forest test site. Remote Sensing of Environment, 68, 95–111.CrossRefGoogle Scholar
  43. Gerard, F. F., & North, P. R. (1997). Analyzing the effect of structural variability and canopy gaps on forest BRDF using a geometric-optical model. Remote Sensing of Environment, 62, 46–62.CrossRefGoogle Scholar
  44. Gillespie, A. R. (1992). Spectral mixture analysis of multispectral thermal infrared images. Remote Sensing of Environment, 42, 137–145.CrossRefGoogle Scholar
  45. Goel, N. S. (1998). Models of vegetation canopy reflectance and their use in estimation of biophysical parameters from reflectance data. Remote Sensing Reviews, 4, 1–222.CrossRefGoogle Scholar
  46. Graetz, R. D., & Gentle, M. R. (1982). The relationship between reflectance in the Landsat wavebands and the composition of an Australian semi-arid shrub rangeland. Photogrammetric Engineering and Remote Sensing, 48, 1721–1730.Google Scholar
  47. Gutman, G. G. (1999). On the use of long-term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer. Journal of Geophysical Research-Atmospheres, 104, 6241–6255.CrossRefGoogle Scholar
  48. Hall, F. G., Peddle, D. R., & LeDrew, E. F. (1996). Remote sensing of biophysical variables in boreal forest stands of Picea mariana. International Journal of Remote Sensing, 17, 3077–3081.CrossRefGoogle Scholar
  49. Hall, F. G., Shimabukuro, Y. E., & Huemmrich, K. F. (1995). Remote-sensing of forest biophysical structure using mixture decomposition and geometric reflectance models. Ecological Applications, 5, 993–1013.CrossRefGoogle Scholar
  50. Hansen, M. C, DeFries, R. S., Townshend, J. R. G., & Sohlberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21, 1331–13 64.Google Scholar
  51. Horowitz, H. M., Nalepka, R. F., Hyde, P. D., & Morgenstern, J. P. (1971). Estimating the proportions of unresolved objects within a single resolution element of a multispectral scanner. Seventh International Symposium on Remote Sensing of Environment, 1307–1320. University of Michigan, Ann Arbor, MI.Google Scholar
  52. Huemmrich, K. F., & Goward, S. N. (1997). Vegetation canopy PAR absorptance and NDVI: An assessment for ten tree species with the SAIL model. Remote Sensing of Environment, 61,254–269.CrossRefGoogle Scholar
  53. Huete, A., Justice, C, & Leeuwen, W. V. (1999). MODIS Vegetation Index (MOD 13): Algorithm Theoretical Basis Document. NASA.Google Scholar
  54. Huete, A., Justice, C, & Liu, H. (1994). Development of vegetation and soil indexes for MODIS-EOS. Remote Sensing of Environment, 49, 224–234.CrossRefGoogle Scholar
  55. Huete, A. R. (1986). Separation of soil-plant spectral mixtures by factor analysis. Remote Sensing of Environment, 19, 237–251.CrossRefGoogle Scholar
  56. Huete, A. R. (1998). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25,295–309.CrossRefGoogle Scholar
  57. Illera, P., Fernandez, A., & Delgado, J. A. (1996). Temporal evolution of the NDVI as an indicator of forest fire danger. International Journal of Remote Sensing, 17, 1093–1105.CrossRefGoogle Scholar
  58. Irons, J. R., Ranson, K. J., Williams, D. L., Irish, R. R., & Huegel, F. G. (1991). An off-nadir-pointing imaging spectroradiometer for terrestrial ecosystem studies. IEEE Transactions On Geoscience and Remote Sensing, 29, 66–74.CrossRefGoogle Scholar
  59. Jacquemoud, S., & Baret, F. (1990). Prospect: A model of leaf optical-properties spectra. Remote Sensing of Environment, 34, 75–91.CrossRefGoogle Scholar
  60. Jacquemoud, S., Baret, F., Andrieu, B., Danson, F. M., & Jaggard, K. (1995). Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data: Application to TM and AVIRIS sensors. Remote Sensing of Environment, 52, 163–172.CrossRefGoogle Scholar
  61. Janecek, A., Benderoth, G., Ludeke, M. K. B., Kindermann, J., Kohlmaier, G. H. (1989). Model of the seasonal and perennial carbon dynamics in deciduous-type forests controlled by climatic variables. Ecological Modelling, 49, 101–124.CrossRefGoogle Scholar
  62. Jordan, C. F. (1969). Derivation of Leaf-Area Index from quality of light on forest floor. Ecology, 50, 663–666.CrossRefGoogle Scholar
  63. Kasischke, E. S., & French, N. H. F. (1995). Locating and estimating the areal extent of wildfires in Alaskan boreal forests using multiple-season AVHRR NDVI composite data. Remote Sensing of Environment, 51, 263–275.CrossRefGoogle Scholar
  64. Kasischke, E. S., & French, N. H. F. (1997). Constraints on using AVHRR composite index imagery to study patterns of vegetation cover in boreal forests. International Journal of Remote Sensing, 18, 2403–2426.CrossRefGoogle Scholar
  65. Kasischke, E. S., French, N. H. F., Harrell, P., Christensen, N. L., Ustin, S. L., & Barry, D. (1993). Monitoring of wildfires in boreal forests using large-area AVHRR NDVI composite image data. Remote Sensing of Environment, 45, 61–71.CrossRefGoogle Scholar
  66. Kaufman, Y. J., & Tanre, D. (1992). Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30, 261–270.CrossRefGoogle Scholar
  67. Kauth, R. J., & Thomas, G. S. (1976). The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, 4b, 41–51. Purdue University, Indiana.Google Scholar
  68. Lacaze, R., Chen, J. M., Roujean, J. -L., & Leblanc, S. G. (2002). Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sensing of Environment, 79, 84–95.CrossRefGoogle Scholar
  69. Lacaze, R., & Roujean, J. -L. (2001). G-function and hot spot (GHOST) reflectance model application to multi-scale airborne POLDER measurements. Remote Sensing of Environment, 76, 67–68.CrossRefGoogle Scholar
  70. Larcher, W. (1995). Physiological plant ecology. Springer-Verlag, New York, USA.CrossRefGoogle Scholar
  71. Leblon, B., Alexander, M., Chen, J., & White, S. (2001). Monitoring fire danger of northern boreal forests with NOAA-AVHRR NDVI images. International Journal of Remote Sensing, 22,2839–2846.Google Scholar
  72. Li, X., & Strahler, A. H. (1992a). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Transactions on Geoscience and Remote Sensing, 30, 276–292.CrossRefGoogle Scholar
  73. Li, X. W., & Strahler, A. H. (1992b). Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: Effect of crown shape and mutual shadowing. IEEE Transactions On Geoscience and Remote Sensing, 30, 276–292.CrossRefGoogle Scholar
  74. Liu, H., & Huete, A. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions On Geoscience and Remote Sensing, 33, 457–465.CrossRefGoogle Scholar
  75. Lloyd, D., (1990). A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. International Journal of Remote Sensing, 11, 2269–2279.CrossRefGoogle Scholar
  76. Lobell, D. B., Asner, G. P., Law, B. E., & Treuhaft, R. N. (2001). Subpixel canopy cover estimation of coniferous forests in Oregon using SWIR imaging spectrometry. Journal of Geophysical Research-Atmospheres, 106, 5151–5160.CrossRefGoogle Scholar
  77. Los, S. O. (1998). Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites. IEEE Transactions On Geoscience and Remote Sensing, 36, 206–213.CrossRefGoogle Scholar
  78. Los, S. O., Collatz, G. J., Sellers, P. J., Malmstrom, C. M., Pollack, N. H., DeFries, R. S., Bounoua, L., Parris, M. T., Tucker, C. J., & Dazlich, D.A (2000). A global 9-yr biophysical land surface dataset from NOAA AVHRR data. Journal of Hydrometeorology, 1, 183–199.CrossRefGoogle Scholar
  79. Ludeke, M. K.B., Ramge, P. H., & Kohlmaier, G. H. (1996). The use of satellite NDVI data for the validation of global vegetation phenology models: Application to the Frankfurt Biosphere Model. Ecological Modelling, 91, 255–270.CrossRefGoogle Scholar
  80. Lyon, J. G., Yuan, D., Lunetta, R. S., & Elvidge, C. D. (1998). A change detection experiment using vegetation indices. Photogrammetrie Engineering and Remote Sensing, 64,143–150.Google Scholar
  81. Maas, S. J., & Dunlap, J. R. (1989). Reflectance, transmittance, and absorptance of light by normal, etiolated, and albino corn leaves. Agronomy Journal, 81, 105–110.CrossRefGoogle Scholar
  82. Masek, J. G. (2001). Stability of boreal forest stands during recent climate change: evidence from Landsat satellite imagery. Journal of Biogeography, 28, 967–976.CrossRefGoogle Scholar
  83. McDonald, A. J., Gemmell, F. M., & Lewis, P. E. (1998). Investigation of the utility of spectral vegetation indices for determining information on coniferous forests. Remote Sensing of Environment, 66, 250–272.CrossRefGoogle Scholar
  84. Moody, A., & Johnson, D. M. (2001). Land-surface phenologies from AVHRR using the discrete fourier transform. Remote Sensing of Environment, 75, 305–323.CrossRefGoogle Scholar
  85. Moulin, S., Kergoat, L., Viovy, N., & Dedieu, G. (1997). Global-scale assessment of vegetation phenology using NOAA/AVHRR satellite measurements. Journal of Climate, 10,1154–1170.CrossRefGoogle Scholar
  86. Mustard, J. F., & Sunshine, J. M. (1999). Spectral analysis for earth science investigation. Rencz, A. N. (Ed.). Remote Sensing for the Earth Sciences: Manual of Remote Sensing, 251–306. Wiley & Sons, New York.Google Scholar
  87. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., & Nemani, R. (1997a). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386, 698–702.CrossRefGoogle Scholar
  88. Myneni, R. B., Nemani, R. R., & Running, S. W. (1997b). Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions On Geoscience and Remote Sensing, 35, 1380–1393.CrossRefGoogle Scholar
  89. Myneni, R. B., Ross, J., & Asrar, G. (1989a). A review on the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology, 45, 1–153.CrossRefGoogle Scholar
  90. Myneni, R. B., Ross, J., & Asrar, G. (1989b). A review on the theory of photon transport in leaf canopies, Agricultural and Forest Meteorology, 45, 1–153.CrossRefGoogle Scholar
  91. Nemani, R., Pierce, L., Running, S., & Band, L. (1993). Forest ecosystem processes at the watershed scale: sensitivity to remotely-sensed leaf area index estimates. International Journal of Remote Sensing, 14, 2519–2534.CrossRefGoogle Scholar
  92. Norman, J. M, (1993). Scaling processes between leaf and canopy levels. Ehleringer, J. R., &  Field, C.B. (Eds.). Scaling physiological processes: Leaf to global, 41–76. Academic Press, San Diego, CA.Google Scholar
  93. North, P. R. J. (2002). Estimation of fAPAR, LAI, and vegetation fractional cover from ATSR-2 imagery. Remote Sensing of Environment, 80, 114–121.CrossRefGoogle Scholar
  94. Parker, G. G. (1995). Structure and microclimate of forest canopies, in Forest Canopies. Lowman, M., &  N. Nadkarni N. (Eds.). A review of research on a biological frontier, 73–106. Academic Press, San Diego, CA.Google Scholar
  95. Peddle, D. R., Hall, F. G., & LeDrew, E. F. (1999). Spectral mixture analysis and geometric-optical reflectance modeling of boreal forest biophysical structure. Remote Sensing of Environment, 67, 288–297.CrossRefGoogle Scholar
  96. Qin, W., & Liang, S. (2000). Plane-parallel canopy radiation transfer modeling: Recent advances and future directions. Remote Sensing Reviews, 18,281–306.CrossRefGoogle Scholar
  97. Qin, W. H. (1993). Modeling bidirectional reflectance of multicomponent vegetation canopies. Remote Sensing of Environment, 46, 235–245.CrossRefGoogle Scholar
  98. Ramsey, E. W., Chappell, D. K., & Baldwin, D. G. (1997). AVHRR imagery used to identify hurricane damage in a forested wetland of Louisiana. Photogrammetric Engineering and Remote Sensing, 63, 293–297.Google Scholar
  99. Richardson, A. J., & Wiegand, C. L. (1977). Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 43, 1541–1552.Google Scholar
  100. Roberts, D. A., Gardner, M., Church, R., Ustin, S., Scheer, G., & Green, R. O. (1998). Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models. Remote Sensing of Environment, 65, 267–279.CrossRefGoogle Scholar
  101. Roberts, D. A., Smith, M. O., &. Adams, J. B. (1993). Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sensing of Environment, 44, 255–269.CrossRefGoogle Scholar
  102. Rondeaux, G., & Herman, M. (1991). Polarization of light reflected by crop canopies. Remote Sensing of Environment, 38, 63–75.CrossRefGoogle Scholar
  103. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.CrossRefGoogle Scholar
  104. Rosema, A., Verhoef, W., Noorbergen, H., & Borgesius, J. J. (1992). A new forest light interaction model in support of forest monitoring. Remote Sensing of Environment, 42, 23–41.CrossRefGoogle Scholar
  105. Ross, J. (1981). The radiation regime and architecture of plant stands. W. Junk Publishers, The Hague, Netherlands.CrossRefGoogle Scholar
  106. Rouse, J. W., Haas, R. H., Shell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS-1. Third Earth Resources Technology Satellite Symposium, 309–317.Google Scholar
  107. Sabol, D. E., Gillespie, A. R., Adams, J. B., Smith, M. O., & Tucker, C. J. (2002). Structural stage in Pacific Northwest forests estimated using simple mixing models of multispectral images. Remote Sensing of Environment, 80, 1–16.CrossRefGoogle Scholar
  108. Sandmeier, S., & Deering, D. W. (1999). Structure analysis and classification of boreal forests using airborne hyperspectral BRDF data from ASAS. Remote Sensing of Environment, 69, 281–295.CrossRefGoogle Scholar
  109. Schaaf, C. B., & Strahler, A. H. (1993). Solar zenith angle effects on forest canopy hemispherical reflectances calculated with a geometric-optical bidirectional reflectance model. IEEE Transactions On Geoscience and Remote Sensing, 31, 921–927.CrossRefGoogle Scholar
  110. Sellers, P. J. (1987). Canopy reflectance, photosynthesis, and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sensing of Environment, 21, 143-183.CrossRefGoogle Scholar
  111. Settle, J. J., & Drake, N. A. (1993). Linear mixing and the estimation of ground cover proportions. International Journal of Remote Sensing, 14, 1159–1177.CrossRefGoogle Scholar
  112. Shimabukuro, Y. R, Batista, G. T., Mello, E. M. K., Moreira, J. C, & Duarte, V. (1998). Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon Region. International Journal of Remote Sensing, 19, 535–541.CrossRefGoogle Scholar
  113. Smith, M. O., Ustin, S. L., Adams, J. B., & Gillespie, A. R. (1990). Vegetation in deserts: I. Regional measure of abundance from multispectral images. Remote Sensing of Environment, 31, 1–26.CrossRefGoogle Scholar
  114. Souza, C, & Barreto, P. (2000). An alternative approach for detecting and monitoring selectively logged forests in the Amazon. International Journal of Remote Sensing, 21, 173–179.CrossRefGoogle Scholar
  115. Spanner, M., Johnson, L., Miller, J., McCreight, R., Freemantle, J., Runyon, J., & Gong, P. (1994). Remote sensing of seasonal leaf area index across the Oregon transect. Ecological Applications, 4, 258–271.CrossRefGoogle Scholar
  116. Strahler, A. H., & Jupp, D. L. (1991). Geometric-optical modeling of forests as remotely-sensed scenes composed of three-dimensional, discrete objects. Myneni, R. B., &Ross J. (Eds.). Photon-Vegetation Interactions: Applications to Optical Remote Sensing and Plant Ecology. Springer-Verlag, Berlin.Google Scholar
  117. Strebel, D. E., Goel, N. S., & Ranson, K. J. (1985). Two-dimensional leaf orientation distributions. IEEE Transactions on Geoscience and Remote Sensing, 23, 640–647.CrossRefGoogle Scholar
  118. Tucker, C. J (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150.CrossRefGoogle Scholar
  119. Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. Higher northern latitude NDVI and growing season trends from 1982 to 1999. International Journal of Biometeorology, in press.Google Scholar
  120. Vanderbilt, V. C, Grant, L., & Ustin, S. L. (1991). Polarization of light by vegetation. Myneni, R. B., &Ross J. (Eds.). Photon-Vegetation Interactions: Applications to Optical Remote Sensing and Plant Ecology, 190–228. Springer-Verlag, Berlin.Google Scholar
  121. Verhoef, W. (1984). Light-scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sensing of Environment, 16, 125–141.CrossRefGoogle Scholar
  122. Verstraete, M. M., & Pinty, B. (1996). Designing optimal spectral indexes for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 34, 1254–1265.CrossRefGoogle Scholar
  123. White, M. A., Thornton, P. E., & Running, S. W. (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11, 217–235.CrossRefGoogle Scholar
  124. Woodcock, C. E., Collins, J. B., Jakabhazy, V. D., Li, X., Macomber, S. A., & Wu, Y. (1997). Inversion of the Li-Strahler canopy reflectance model for mapping forest structure. IEEE Transactions on Geoscience and Remote Sensing, 35, 405–414.CrossRefGoogle Scholar
  125. Woolley, J. T. (1971). Reflectance and transmittance of light by leaves. Plant Physiology, 47, 656–662.CrossRefGoogle Scholar
  126. Wu, Y. C, & Strahler, A. H. (1994). Remote estimation of crown size; stand density; andbiomass on the Oregon Transect. Ecological Applications, 4, 299–312.CrossRefGoogle Scholar
  127. Young, S. S., & Wang, C. Y. (2001). Land-cover change analysis of China using global-scale Pathfinder AVHRR Landcover (PAL) data, 1982-92. International Journal of Remote Sensing, 22, 1457–1477.Google Scholar
  128. Zarco-Tejada, P. J., Miller, J. R., Noland, T. L., Mohammed, G. H., & Sampson, P. H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39, 1491–1507.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gregory P. Asner
    • 1
  • Jeffrey A. Hicke
    • 1
  • David B. Lobell
    • 1
  1. 1.Department of Global Ecology, Carnegie Institution of WashingtonStanford UniversityStanfordUSA

Personalised recommendations