Skip to main content

Tree and Canopy Height Estimation with Scanning Lidar

  • Chapter
Book cover Remote Sensing of Forest Environments

Abstract

A large part of the research efforts concerning the remote sensing of forests has been devoted to the development of repeatable methods for the extraction of information from monoscopic, two-dimensional images. Emphasis has been on spectral pattern recognition. Although appropriate for species or health characterisation, this approach comes with several limitations when detailed information on forest structure, e.g. three-dimensional aspects of forest canopies, is sought (Wulder 1998). Accurate measurements of height, density, volume, stratification, etc. at local scales, which are of prime interest for foresters and forest ecologists, and which have a geometric rather than radiometric nature, are still beyond the capabilities of two-dimensional remote sensing and image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldred, A., & Bonner, M. (1985). Application of airborne lasers to forest surveys, Information Report P1-X-51, Canadian Forestry Service, Petawawa National Forestry Centre.

    Google Scholar 

  • Andersen, H. -E., Reutebuch, S. E., & Schreuder, G. F. (2001). Automated individual tree measurement through morphological analysis of a lidar-based canopy surface model. Proceedings of the First International Precision Forestry Symposium, 11–22. June 17–20, 2001, Seattle, WA.

    Google Scholar 

  • Axelsson, P. (2000). DEM generation from laser scanner data using TIN adaptive models. International Archives of Photogrammetry and Remote Sensing. Proceedings of the International Society of Photogrammetry and Remote Sensing XIXth Congress, B4, 110–117, Amsterdam, Netherlands.

    Google Scholar 

  • Baltsavias, E. P. (1999). A comparison of between photogrammetry and laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 83–94.

    Article  Google Scholar 

  • Blair, J. B., Rabine, D., & Hofton, M. (1999). The Laser Vegetation Imaging Sensor (LVIS): a medium-altitude, digitization only, airborne laser altimeter for mapping vegetation and topography. ISPRS Photogrammetry and Remote Sensing, 54, 115–122.

    Article  Google Scholar 

  • Carabajal, C. C, & Harding, D. J. (2001). Evaluation of Geoscience Laser Altimeter System (GLAS) waveforms for vegetated landscapes using airborne laser altimeter scanning data. Proceedings of the Land Surface Mapping and Characterization using Laser Altimetry, Joint Workshop of ISPRS III/3 and III/6, 125–128. October 22–24, Annapolis, MD.

    Google Scholar 

  • Dubayah, R., et al. (1997). The Vegetation Canopy Lidar Mission. Land Satellite Information in the Next Decade II: Sources and Applications, 100–112 American Society for Photogrammetry and Remote Sensing, Bethesda, MD.

    Google Scholar 

  • Evans, D., Roberts, S., McCombs, J., & Harrington, R. (2001). Detection of regularly spaced targets in small-footprint lidar data: Research issues for consideration. Photogrammetric Engineering and Remote Sensing, 67, 1133–1136.

    Google Scholar 

  • Filin, S. (2001). Recovery of systematic biases in laser altimeters using natural surfaces. Proceedings of the Land Surface Mapping and Characterization using Laser Altimetryy Joint Workshop of ISPRS III/3 and III/6, 85–91. October 22–24, Annapolis, MD.

    Google Scholar 

  • Flood, M. (2001). Lidar activities and research priorities in the Commercial sector. Proceedings of the Land Surface Mapping and Characterization using Laser Altimetry, Joint Workshop of ISPRS III/3 and III/6, 3–7. October 22–24, Annapolis, MD.

    Google Scholar 

  • Harding, D. J., Lefsky, M. A., Parker, G. G., & Blair, J. B. (2001). Laser altimeter canopy height profiles: Methods and validation for closed-canopy, broadleaf forests. Remote Sensing of Environment, 76, 283–297.

    Article  Google Scholar 

  • Hese, S., & Lehman, F. (2000). Comparison of digital surface models of HRSC-A and LASER scanner for forest stand characteristics. International Archives of Photogrammetry and Remote Sensing. Proceedings of the International Society of Photogrammetry and Remote Sensing XIXth Congress, 33-Part B7/2, 525–532. Amsterdam, Netherlands.

    Google Scholar 

  • Hill, J. M., Graham, L. A., & Henry, R. (2000). Wide-area topographic mapping and applications using airborne light detection and ranging (LIDAR) technology. Photogrammetric Engineering and Remote Sensing, 66, 908–914.

    Google Scholar 

  • Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., & Yi-Hong, Z. (2000). Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128, 109–120.

    Article  Google Scholar 

  • Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 53, 193–203.

    Article  Google Scholar 

  • Lefsky, M. A., Cohen, W. B., Acker, S. A., Parker, G. G., Spies, T. A., & Harding, D. (1999). Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sensing of Environment, 70, 339–361.

    Article  Google Scholar 

  • Lefsky, M., Cohen, W., & Spies, T. (2001). An evaluation of alternate remote sensing products for forest inventory, monitoring, and mapping of Douglas-fir forests in western Oregon. Canadian Journal of Forest Research, 31, 78–117.

    Article  Google Scholar 

  • Lim, K., Treitz, P., Groot, A., & St-Onge, B. (2001). Estimation of individual tree heights using LIDAR remote sensing. Proceedings of the Twenty-Third Annual Canadian Symposium on Remote Sensing, Quebec, QC, August 20–24, 2001 (CD-ROM).

    Google Scholar 

  • Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2002). LiDAR remote sensing of forest structure. Progress in Physical Geography, in press.

    Google Scholar 

  • Luthcke, S., & Rowlands, D. (2001). Spaceborne laser altimeter instrument parameter calibration from integrated residual analysis. Proceedings of the Land Surface Mapping and Characterization using Laser Altimetry, Joint Workshop of ISPRS III/3 and III/6, 81–83. October 22–24, Annapolis, MD.

    Google Scholar 

  • MacLean, G. A., & Krabill, W. B. (1986). Gross-merchantable timber volume estimation using an airborne LiDAR system. Canadian Journal of Remote Sensing, 12, 7–18.

    Google Scholar 

  • Magnussen, S., & Boudewyn, P. (1998). Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research, 28, 1016–1031.

    Article  Google Scholar 

  • Magnussen, S., Eggermont, P., & LaRiccia, V. N. (1999). Recovering tree heights from airborne laser scanner data. Forest Science, 45, 407–422.

    Google Scholar 

  • Means, J. E., Acker, S. A., Harding, D. J., Blair, D. B., Lefsky, M. A., Cohen, W. B., Harmon, M E., & McKee, W. A. (1999). Use of large-footprint scanning airborne LiDAR to estimate forest stand characteristics in the Western Cascade of Oregon. Remote Sensing of Environment, 67,298–308.

    Article  Google Scholar 

  • Næsset, E. (1997). Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 52, 49–56.

    Article  Google Scholar 

  • Nelson, R., Krabill, W., & Maclean, G. (1984). Determining forest canopy characteristics using airborne laser data. Remote Sensing of Environment, 15, 201–212.

    Article  Google Scholar 

  • Nilsson, M. (1996). Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 56, 1–7.

    Article  MathSciNet  Google Scholar 

  • Ni-Meister, W., Jupp, D. L. B., & Dubayah, R. (2001). Modeling lidar waveforms in heterogeneous and discrete canopies. IEEE Transactions on Geoscience and Remote Sensing, 39, 1943–1958.

    Article  Google Scholar 

  • Nelson, R., Swift, R., & Krabill, W. (1988). Using airborne lasers to estimate forest canopy and stand characteristics. Journal of Forestry, 86,31–38.

    Google Scholar 

  • Næsset, E. (1997). Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS Journal of Photogrammetry and Remote Sensing, 52, 49–56.

    Article  Google Scholar 

  • Næsset, E. (2002). Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sensing of Environment, 80, 88–99.

    Article  Google Scholar 

  • Optech (2001). ALTM 2033 Brochure, Optech Inc., Ontario, Canada.

    Google Scholar 

  • Persson, A., Holmgren, J., & Soderman, U. (2002). Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing, in press.

    Google Scholar 

  • Pfeifer, N., Reiter, T., Briese, C, & Rieger, W. (1999). Interpolation of high quality ground models from laser scanner data in forested areas. ISPRS Workshop on “Mapping surface structure and topography by airborne and space borne lasers”, Commission III, Working Group 3, 31–36.La Jolla, Calif., 9–11 Nov. 1999.

    Google Scholar 

  • Schreier, H., Lougheed, J., Tucker, C, & Leckie, D. (1985). Automated measurements of terrain reflection and height variations using an airborne infrared laser system. International Journal of Remote Sensing, 6, 101–113.

    Article  Google Scholar 

  • Solodukin, V. I., Kulyasov, A. G., Utenkov, B. I., et al. (1977). S”emka profilya krony dereva s pomoshch’yu laszer-nogo dal’nomera (Drawing the crown profile of a tree with the aid of a laser). Lesn. Khoz, 2, 71–73.

    Google Scholar 

  • Spurr, S. H., & Barnes, B. V. (1980). Forest Ecology, (3rd ed.). Krieger Publishing Company, Florida.

    Google Scholar 

  • St-Onge, B. (1999). Estimating individual tree heights of the boreal forest using airborne laser altimetry and digital videography. ISPRS Workshop on “Mapping surface structure and topography by airborne and spaceborne lasers”, Commission III, Working Group 3, 179–184. La Jolla, Calif. 9–11 Nov. 1999.

    Google Scholar 

  • St-Onge, B., & Renaud A. (2001). Estimating merchantable timber volume of aspen and spruce stands of the boreal forest using airborne laser altimetry. Proceedings of the Twenty-Third Annual Canadian Symposium on Remote Sensing, Quebec, QC, August 20–24,2001 (CD-ROM).

    Google Scholar 

  • Wehr, A., & Lohr, U. (1999). Airborne laser scanning-an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54,68–82.

    Article  Google Scholar 

  • Wulder, M. (1998). Optical remote sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 22, 449–476.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

St-Onge, B., Treitz, P., Wulder, M.A. (2003). Tree and Canopy Height Estimation with Scanning Lidar. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics