Skip to main content

Using Georeferenced Large-Scale Aerial Videography as a Surrogate for Ground Validation Data

  • Chapter

Abstract

When mapping forest regions and vegetation from satellite imagery or small-scale photography, it is essential to obtain an adequate sample of geographically distributed, unbiased verification and validation data to both drive the classification and assess the accuracy of the results. Traditionally, this has required on-site visits or “ground truthing” of a randomly selected set of locations distributed across the region to be mapped, an often expensive and time consuming process.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. R., Hardy, E. E., Roach, J. T., & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey, Professional Paper 964. Washington, D.C.

    Google Scholar 

  • Drake, S. (1996). Visual Interpretation of Vegetation Classes from Airborne Videography: An Evaluation of Observer Proficiency with Minimal Training. Photogrammetric Engineering & Remote Sensing, 62, 969–978.

    Google Scholar 

  • Dunford, C, Mouat, D., Norton-Griffiths, M., & Slaymaker, D. M. (1983). Remote sensing for rural development planning in Africa. The Journal for the International Institute for Aerial Survey and Earth Sciences, 2, 99–108.

    Google Scholar 

  • Eleveld, M. A., Blok, S. T., & Bakx, J. P. G. (2000). Deriving relief of a coastal landscape 1 with aerial video data. International Journal of Remote Sensing, 21, 189–195.

    Article  Google Scholar 

  • Graham, L. A. (1993). Airborne Video for Near-Real-Time Vegetation Mapping. Journal of Forestry, 8, 28–32.

    Google Scholar 

  • Hayward, C. D., & Slaymaker, D. M. (2001). Estimating the significant above ground biomass of Amazonian rain forest using low altitude aerial videography. 18 th Biennal Workshop on Color Photography and Videography in Resource Assessment, in press. 16–18 May, ASPRS, Bethesda, Maryland.

    Google Scholar 

  • Hess, L. L., Novo, E. M. L. M., Slaymaker, D. M., Holt, J. Steffen, C., Valeriano, D. M., Mertes, L. A. K., Krug, T., Melack, J. M., Castil, M., Holmes, C., & Hayward, C. (2001). Geocoded Digital Videography for Validation of Land Cover in the Amazon Basin. Journal of Remote Sensing, in press.

    Google Scholar 

  • Jennings, C. A., Vohs, P. A., & Dewey, M. R. (1992). Classification of a wetland area along the upper Mississippi River with aerial videography. Wetlands, 12, 163–170.

    Article  Google Scholar 

  • Kelly, P. M., & White, J. M. (1994). Preprocessing remotely-sensed data for efficient analysis and classification. Computer Research Group, MS B-265. Los Alamos National Laboratory.

    Google Scholar 

  • King, D. J. (1995). Airborne multispectral digital camera and video sensors: a critical review of system designs and applications. Canadian Journal of Remote Sensing, 21, 245–273.

    Google Scholar 

  • Marsh, S. E., Walsh, J. L., & Sobrevila, C. (1994). Evaluation of airborne video data for land-cover classification accuracy assessment in an isolated Brazilian forest. Remote Sensing of Environment, 48.

    Google Scholar 

  • Mausel, P. W., Everitt, J. H., Escobar, D. E., & King, D. J. (1992). Airborne videography: current status and future perspectives. Photogrammetric Engineering and Remote Sensing, 58, 1189–1195.

    Google Scholar 

  • Meisner, D. E. (1986). Fundamentals of airborne video remote sensing. Remote Sensing of Environment, 17, 63–79.

    Article  Google Scholar 

  • Norton-Griffiths, M. (1988). Aerial point sampling for land use surveys. Journal of Biogeography, 15, 149–156.

    Article  Google Scholar 

  • Richards, J. A., Landgrebe, D. A., & Swain, P. H. (1982). A means for utilizing ancillary information in multispectral classification. Remote Sensing of Environment, 12, 463–477.

    Article  Google Scholar 

  • Sayn-Wittgenstein, L. (1978). Recognition of tree species on aerial photographs. Information Report FMR-X-118, Forest Management Institute, Canadian Forestry Service, Ottawa, Ontario.

    Google Scholar 

  • Scott, J. M., & Jennings, M. D. (1998). Large-Area Mapping of Biodiversity. Annals of the Missouri Botanical Garden, 85, 34–47.

    Article  Google Scholar 

  • Sidle, J. G., & Ziewitz, J. W. (1990). Use of aerial videography in wildlife habitat studies. Wildlife Society Bulletin, 18, 56–62.

    Google Scholar 

  • Slaymaker, D. M., & Hannah, L. (1997). GPS-logged Aerial Video as a Georeferencing Tool For Digital Imagery in Remote Regions, a case study in Madagascar. The Proceedings of the 16th Biennial workshop on Color Photography and Videography in Resource Assessment. ASPRS, Bethesda, Maryland.

    Google Scholar 

  • Slaymaker, D. M., Jones, K. M. L., Griffin, C. R., & Finn, J. T. (1996). Mapping deciduous forests in southern New England using aerial videography and hyperclustered multi-temproal Landsat TM imagery. Scott, J. M., Tear, T. H., & Davis F. W. (Eds.). Gap Analysis: A Landscape Approach to Biodiversity Planning, 87-101. American Society of Photogrammetry and Remote Sensing, Bethesda, MD.

    Google Scholar 

  • Slaymaker, D. M., Schultz, H., Hanson, A., Riseman, E., Holmes, C, Powell, M., & Delaney, M. (1999). Calculating Forest Biomass with Small Format Aerial Photography, Videography, and a Profiling Laser. The Proceedings of the 7th. Biennial workshop on Color Photography and Videography in Resource Assessment, 241–260. April 1999, ASPRS, Bethesda, Maryland.

    Google Scholar 

  • Strong, L. L., & Cowardin, L. M. (1995). Improving prairie pond counts with aerial video and global positioning systems. Journal of Wildlife Management, 59, 708–719.

    Article  Google Scholar 

  • Stumpf, K. A., & Koltun, J. M. (1993). Rule based aggregation of raster image classifications into vector GIS databases with five and forty acre minimum size-mapping units. ASPRS/ACSM Conference, 261–278. Washington, D.C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Slaymaker, D. (2003). Using Georeferenced Large-Scale Aerial Videography as a Surrogate for Ground Validation Data. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics