Skip to main content

Rationale and Conceptual Framework for Classification Approaches to Assess Forest Resources and Properties

  • Chapter
Remote Sensing of Forest Environments

Abstract

Classification has been an important tool in digital image analysis for land resources applications since early Landsat missions when it was recognized that multispectral digital images are composed of multivariate measurement vectors for each and every pixel. The hundreds of thousands of such vectors typically making up an image could be treated as class descriptors, and the spectral bands as explanatory variables related to categories of interest in the image. This is an application of the more general methodology of classification or pattern recognition (Ripley 1996). This Chapter provides a conceptual framework for selecting appropriate classification approaches to assess forest resources and forest (canopy, stand, and landscape) properties. It is beyond the scope of this Chapter to provide a comprehensive review of recent literature on image classification. S. E. Franklin (2001) provided an excellent overview of classification for the remote sensing of forests, and we use that work as a point of departure. Textbooks such as those by Jensen (1996) and Schowengerdt (1997) provide comprehensive explanations of the general problem of classification in remote sensing. Several recent reviews also outline advances in the use of classification in forest remote sensing Wulder 1998, Trietz and Howarth 1999, Lucas et al. in press, Woodcock in press).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. B., Sabol, D. E., Kapos, V., Filho, R. A., Roberts, D., Smith, M. O. & Gillespie, A. R. (1995). Classification of multispectral images based on fractions and endmembers: applications to land-cover change in the Brazilian Amazon. Remote Sensing of Environment, 52, 137–152.

    Article  Google Scholar 

  • Anderson, J. R., Hardy, E. E., Roach, J. T. & Witmer, R. E. (1976). A land use and land cover classification system for use with remote sensor data. U.S. Geological Survey Professional Paper 964. U.S. Geologic Survey, Arlington, VA, USA.

    Google Scholar 

  • Austin, M. P., Nicholls, A. O. & Margules, C. R. (1990). Determining the realised qualitative niche: environmental niches of five Eucalyptus species. Ecological Monographs, 60, 161–177.

    Article  Google Scholar 

  • Carpenter, G. A., Gjaja, M. N., Gopal, S. & Woodcock, C. E. (1997). ART neural networks for remote sensing: vegetation classification from Landsat TM and terrain data. IEEE Transactions on Geoscience and Remote Sensing, 35, 308–325.

    Article  Google Scholar 

  • Carpenter, G. A., Gopal, S., Macomber, S., Martens, S., Woodcock, C. E. & Franklin, J. (1999). A neural network method for efficient vegetation mapping — an introduction. Remote Sensing of Environment, 70, 3276–338.

    Google Scholar 

  • Cochrane, M. A. (2000). Using vegetation reflectance variability for species level classification of hyperspectral data. International Journal of Remote Sensing, 22, 2075–2087.

    Article  Google Scholar 

  • Culvenor, D. S. (2002). TIDA: an algorithm for the delineation of tree crowns in high spatial resolution remotely sensed imagery. Computers and Geosciences, 28, 33–44.

    Article  Google Scholar 

  • Dustan, P., Dobson, E., & Nelson, G. (2001). Landsat Thematic Mapper: detection of shifts in community composition of coral reefs. Conservation Biology, 15, 892–902.

    Article  Google Scholar 

  • Foody, G. M. (1996a). Approaches for the production and evaluation of fuzzy land cover classifications from remotely sensed data. International Journal of Remote Sensing, 17, 1317–1340.

    Article  Google Scholar 

  • Foody, G. M. (1996b). Fuzzy modelling of vegetation from remotely sensed imagery. Ecological Modelling, 85, 3–12.

    Article  Google Scholar 

  • Foody, G. M. (1999). The continuum of classification fuzziness in thematic mapping. Photogrammetric Engineering and Remote Sensing, 65, 443–451.

    Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80, 185–201.

    Article  Google Scholar 

  • Franco-Lopez, F., Ek, A. R., & Bauer, M. E. (2001). Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sensing of Environment, 77,251–274.

    Article  Google Scholar 

  • Franklin, J. (1991). Land cover stratification using Landsat Thematic Mapper data in Sahelian and Sudanian woodlands and wooded grassland. Journal of Arid Environments, 20, 141–163.

    Google Scholar 

  • Franklin, J. (1995). Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Progress in Physical Geography, 19, 474–499.

    Article  Google Scholar 

  • Franklin, J. (2001). Geographic information science and ecological assessment. Bourgeron, P., Jensen M., & Lessard G. (Eds.) An integrated ecological assessment protocols guidebook. Springer-Verlag, New York.

    Google Scholar 

  • Franklin, J. (in press). Clustering versus regression trees for determining Ecological Land Units in the southern California mountains and foothills. Forest Science.

    Google Scholar 

  • Franklin, J., & Woodcock, C. E. (1997). Multiscale vegetation data for the mountains of Southern California: spatial and categorical resolution. Quattrochi, D. A. & Goodchild, M. F. (Eds.). Scale in remote sensing and GJS. CRC/Lewis Publishers Inc., Boca Raton, FL..

    Google Scholar 

  • Franklin, J., McCullough, P., & Gray, C. (2000a). Terrain variables used for predictive mapping of vegetation communities in Southern California. Gallant, J. P. & Wilson, J. C. (Eds). Terrain analysis: Principles and applications. John Wiley & Sons, New York, NY.

    Google Scholar 

  • Franklin, J., Woodcock, C. E., & Warbington, R. (2000b). Multi-attribute vegetation maps of Forest Service lands in California supporting resource management decisions. Photogrammetric Engineering and Remote Sensing, 66, 1209–1217.

    Google Scholar 

  • Franklin, S. E. (2001). Remote sensing for sustainable forest management. Lewis Publishers, Boca Raton, FL.

    Book  Google Scholar 

  • Friedl, M. A., & Brodley, C. E. (1997). Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 61, 399–409.

    Article  Google Scholar 

  • Gastellu-Etchegorry, J. P., & Bruniquel-Pinel, V. (2001). A modeling approach to assess the robustness of spectrometric predictive equations for canopy chemistry. Remote Sensing of Environment, 76, 1–15.

    Article  Google Scholar 

  • German, G. W. H., & Gabegan, M. N. (1996). Neural network architectures for the classification of temporal image sequences. Computers and Geosciences, 22, 969–979.

    Article  Google Scholar 

  • Gopal, S., & Woodcock, C.E. (1994). Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogrammetric Engineering and Remote Sensing, 60, 181–188.

    Google Scholar 

  • Gordon, A. D. (1999). Classification, (2nd ed.). Chapman & Hall/CRC, Boca Raton, FL.

    MATH  Google Scholar 

  • Guisan, A., & Zimmerman, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.

    Article  Google Scholar 

  • Held, A., Phinn, S., Scarth, P., Stanford, M., Ticehurst, C, Hartini, S., & Lymburnber, L. (2001). Hyperspectral mapping of rainforests and mangroves. Proceedings of the International Geosciences and Remote Sensing Symposium, July 9–13, Sydney. IEEE, Piscataway, NJ, USA, CD-ROM.

    Google Scholar 

  • Hill, R. A. (1999). Image segmentation for humid tropical forest classification in Landsat TM data. International Journal of Remote Sensing, 20,1039–1044.

    Article  Google Scholar 

  • Host, G. E., Polzer, P. L., Mladenoff, D. J., White, M. A., & Crow, T. R. (1996). A quantitative approach to developing regional ecosystem classifications. Ecological Applications, 6, 608–618.

    Article  Google Scholar 

  • Huang, X., & Jensen, J. R. (1997). A machine learning approach to automated knowledgebase building for remote sensing image analysis with GIS data. Photogrammetic Engineering and Remote Sensing, 63, 1185–1194.

    Google Scholar 

  • Hutchinson, C. F. (1982). Techniques for combining Landsat and ancillary data for digital classification improvement. Photogrammetric Engineering and Remote Sensing, 48, 123–130.

    Google Scholar 

  • Jensen, J. R. (1996) Introductory digital image processing: a remote sensing perspective, Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Jupp, D. L. B., & Walker, J. (1997). Detecting structural and growth changes in woodlands and forests: The challenge for remote sensing and the role of geometric-optical modelling, Gholz, H. L., Nakane, K., & Shimoda, H. (Eds.). The use of remote sensing in the modelling of forest productivity, 75–108. Kluwer Academic Publishers, The Netherlands.

    Chapter  Google Scholar 

  • Key, T., Warner, T. A., McGraw J. B., & Fajvan, M. A. (2001). A comparison of multispectral and multitemporal information in high spatial resolution imagery for classification of individual tree species in a temperate hardwood forest. Remote Sensing of Environment, 75, 100–112.

    Article  Google Scholar 

  • Kimes, D. S., Nelson, R. F., Salas, W. A., & Skole, D. L. (1999). Mapping secondary tropical forest and forest age from SPOT HRV data. International Journal of Remote Sensing, 20, 3625–3640.

    Article  Google Scholar 

  • Lambin, E., & Strahler, A. (1994). Change vector analysis in multi-temporal space: A tool to detect and categorise land cover change processes using high temporal resolution satellite data. Remote Sensing of Environment, 48, 231–244.

    Article  Google Scholar 

  • Linders, J. (2000). Comparison of three different methods to select feature for discriminating forest cover types using SAR imagery. International Journal of Remote Sensing, 21, 2089–2099.

    Article  Google Scholar 

  • Lucas, R., Held, A., & Phinn, S. (in press). Tropical forests. Ustin, S. (Ed.). Manual of Remote Sensing, Volume 4, Remote Sensing for Natural Resource Assessment. American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland.

    Google Scholar 

  • Mäkelä, H., & Pekkarinen, A. (2000). Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery. Remote Sensing of Environment, 11,66–75.

    Google Scholar 

  • Mather, P. (1999). Computer processing of remotely sensed images: An introduction, (2nd ed.). John Wiley and Sons, Brisbane, Australia.

    Google Scholar 

  • Michaelsen, J., Schimel, D., Friedl, M., Davis, F. W., & Dubayah, R. C. (1994). Regression tree analysis of satellite and terrain data to guide vegetation sampling and surveys. Journal of Vegetation Science, 5, 673–686.

    Article  Google Scholar 

  • Moore, D. M, Lees, B.G., & Davey, S. M. (1991). A new method for predicting vegetation distributions using decision tree analysis in a geographic information system. Environmental Management, 15, 59–71.

    Article  Google Scholar 

  • Muinonen, E., Maltamo, M., Hyppanen H., & Vainikainen, V. (2001). Forest stand characteristics estimation using a most similar neighbor approach and image spatial structure information. Remote Sensing of Environment,78 223-228.

    Article  Google Scholar 

  • Pax-Lenney, M., Woodcock, C. E., Macomber, S. A., Gopal, S., & Song, C. (2001). Forest mapping with a generalized classifier and Landsat TM data. Remote Sensing of Environment, 77, 241–250.

    Article  Google Scholar 

  • Phinn, S. R. (1997). Remote sensing and spatial analytic techniques for monitoring landscape structure in disturbed and restored coastal environments. Ph.D. Dissertation. Departments of Geography, San Diego State University and University of California at Santa Barbara.

    Google Scholar 

  • Phinn, S. R., (1998). A framework for selecting appropriate remotely sensed data dimensions for environmental monitoring and management. International Journal of Remote Sensing, 19,3457–3463.

    Article  Google Scholar 

  • Phinn, S. R., Menges, C, Hill, G. J. E., & Stanford, M. (2000). Optimising remotely sensed solutions for monitoring, modelling and managing coastal environments. Remote Sensing of Environment, 73, 117–132.

    Article  Google Scholar 

  • Pohl, C, & van Genderen, J. L. (1998). Multisensor image fusion in remote sensing: concepts, methods and applications. International Journal of Remote Sensing, 19, 823–254.

    Article  Google Scholar 

  • Preston, R., Culvenor, D, & Coops, N. (1998). Modeling of tree species and structural attributes from high spatial resolution digital multi-spectral imagery using decision-tree analysis for east coast eucalypt forests of Australia. Hill, D. & Leckie, D. (Eds.). International forum: automated interpretation of high spatial resolution digital imagery for forestry, 225–242, February 10–12, 1998, Victoria, British Columbia. Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, B.C.

    Google Scholar 

  • Pu, R., & Gong, P. (2000). Band selection from hyperspectral data for conifer species identification. Geographic Information Sciences, 6, 137–142.

    Google Scholar 

  • Raucoules, D., & Thomson, K. P. B. (1999). Adaptation of the Hierarchical Stepwise Segmentation Algorithm for automatic segmentation of a SAR mosaic. International Journal of Remote Sensing, 20,2111–2116.

    Article  Google Scholar 

  • Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Rodriguez-Yi, L., Shimabukuro, Y. E., & Rudorff, B. F. T. (2000). Image segmentation for classification of vegetation using NOAA-AVHRR data. International Journal of Remote Sensing, 22, 167–172.

    Article  Google Scholar 

  • Rogan, J., Franklin, J., & Roberts, D. (2002). A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery. Remote Sensing of Environment, 80, 143–156.

    Article  Google Scholar 

  • Scarth, P., & Phinn, S. (2000). Determining forest structural attributes using an inverted geometric-optical model in mixed eucalypt forests, south-east Queensland, Australia, Remote Sensing of Environment, 71,141–157.

    Article  Google Scholar 

  • Schowengerdt, R. A. (1997). Remote sensing: Models and methods for image processing, (2nd ed.). Academic Press, San Diego.

    Google Scholar 

  • Skidmore, A. (1989). An expert system classifies eucalypt forest types using Thematic Mapper data and a digital terrain model. Photogrammetric Engineering and Remote-Sensing, 55, 1449–1464.

    Google Scholar 

  • Skidmore, A., Gauld, A., & Walker, P. (1996). Classification of kangaroo habitat distribution using three GIS models. International Journal of Geographical Information Systems, 10, 441–454.

    Google Scholar 

  • Skidmore A. R., Turner, B. J., Brinkhof, W., & Knowles, E. (1997). Performance of a neural network: mapping forests using GIS and remotely sensed data. Photogrammetric Engineering and Remote Sensing, 63, 501–514.

    Google Scholar 

  • Strahler, A. H. (1981). Stratification of natural vegetation for forest and rangeland inventory using Landsat digital imagery and collateral data. International Journal of Remote Sensing, 2, 15–41.

    Article  Google Scholar 

  • Strahler, A. H., Estes, J. E., Maynard, P. F., Mertz, F. C, & Stow, D. A. (1980). Incorporation of collateral data in Landsat classification and modeling procedures. Proceedings of the Fourteenth International Symposium on Remote Sensing of Environment, 1009–1026, Ann Arbor: Environmental Research Institute of Michigan, USA.

    Google Scholar 

  • Strahler, A. H., Woodcock, C. E., & Smith, J. A. (1986). On the nature of models in remote sensing. Remote Sensing of Environment, 20, 121–139.

    Article  Google Scholar 

  • Treitz, P. M., & Howarth, P. J. (1999). Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems. Progress in Physical Geography, 23, 359–390.

    Google Scholar 

  • Wolter, P. T., Mladenoff, D. J., Host, G. E., & Crow, T. R. (1995). Improved forest classification in the Northern Lake States using multi-temporal Landsat imagery. Photogrammetric Engineering and Remote Sensing, 61,1129–1143.

    Google Scholar 

  • Woodcock, C. E. (in press). Temperate forests. Ustin, S. (Ed.) Manual of Remote Sensing, Volume 4, Remote Sensing for Natural Resource Assessment. American Society for Photogrammetry and Remote Sensing, Bethesda, Maryland.

    Google Scholar 

  • Woodcock, C. D., Collins, J., Gopal, S., Jakabhazy, V. D., Li, X., Macomber, S., Ryherd, S., Harward, V. J., Levitan, J., Wu, Y., & Warbington, R. (1994). Mapping forest vegetation using Landsat TM imagery and a canopy reflectance model. Remote Sensing of Environment, 50, 240–254.

    Article  Google Scholar 

  • Woodcock, C. E., & Harward, V. J. (1992). Nested-hierarchical scene models an image segmentation. International Journal of Remote Sensing, 13,3167–3187.

    Article  Google Scholar 

  • Woodcock, C. E., Macomber, S. A., Pax-Lenney, M., & Cohen, W. B. (2001). Monitoring large areas for forest change using Landsat: generalization across sensors, space and time. Remote Sensing of Environment, 78, 194–203.

    Article  Google Scholar 

  • Wulder, M. (1998). Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progress in Physical Geography, 22, 449–476.

    Google Scholar 

  • Wulder, M., Niemann, K. O., & Goodenough, D. (2000). Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sensing of Environment, 73, 103–114.

    Article  Google Scholar 

  • Yu, B., Ostland, M., Gong, P., & Pu, R. (1999). Penalized linear discriminant analysis for conifer species recognition. IEEE Transactions on Geoscience and Remote Sensing, 37, 2569–2577.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Franklin, J., Rogan, J., Phinn, S.R., Woodcock, C.E. (2003). Rationale and Conceptual Framework for Classification Approaches to Assess Forest Resources and Properties. In: Wulder, M.A., Franklin, S.E. (eds) Remote Sensing of Forest Environments. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0306-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0306-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5014-9

  • Online ISBN: 978-1-4615-0306-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics