Skip to main content

Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration

  • Chapter
Vascular Biochemistry

Abstract

Ischemia is known to promote angiogenesis, and the molecular mechanisms and growth factors involved have been thoroughly investigated. Less attention has been paid to the cellular interactions between proliferating capillaries, inflammatory cells and muscle tissue. In the present investigation, we examined ischemia-induced cell injury and subsequent spontaneous regeneration in relation to angiogenesis and myogenesis. Balb/C mice were anesthetized, and the right femoral artery was occluded proximal to the origin of the arteria poplitea; the left femoral artery was sham-operated. One hour to 3 weeks after occlusion, the ischemic burden was assessed by quantifying the lower hindlimb muscle content of high energy phosphates, nucleosides, NAD+, glycogen and lactate. In vivo uptake of propidium iodide was used as a marker of cell injury. Proliferation of different cell types was evaluated immunomorphologically. As soon as 4 h after occlusion, morphological alterations in lower leg muscle occurred. Rupture of sarcolemma and loss of the contractile filaments were followed by plasma exudation, edema and infiltration of leukocytes, which target myofibers. During the first 12 h after occlusion, high energy phosphate and glycogen content decreased gradually. Levels remained low until day 3 and recovered almost completely until day 21. Nucleoside and lactate content peaked between 6 and 12 h following occlusion. Three days after occlusion, mitotic activity began in endothelial and muscle satellite cells, resulting in new formation of capillaries and muscle fibers. Angiogenesis and myogenesis occur concomitantly in regenerating skeletal muscle because of ischemia-induced cell death and inflammation. (Mot Cell Biochem 246: 57-68, 2003)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Reference

  1. Folkman J, D’Amore PA: Blood vessel formation: What is its molecular basis? Cell 87: 1153–1155, 1996

    Article  PubMed  CAS  Google Scholar 

  2. Risau W: Mechanisms of angiogenesis. Nature 386: 671–674, 1997

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nature Med 6: 389–395, 2000

    Article  PubMed  CAS  Google Scholar 

  4. Schaper W: Quo vadis collateral blood flow? A commentary on a highly cited paper. Cardiovasc Res 45: 220–223, 2000

    Article  PubMed  CAS  Google Scholar 

  5. Scholz D, Ziegelhoeffer T, Friedrich C: Collateral circulation ¡ªtheory and experimental observations. In: P. Lanzer, E.J. Topol (eds). Theory and Practice of Vascular Medicine. Springer, New York/Heidelberg, 2001

    Google Scholar 

  6. Scholz D, Cai WJ, Schaper W: Arteriogenesis, a new concept of vascular adaptation in occlusive disease. Angiogenesis: 2002 (in press)

    Google Scholar 

  7. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W: Angiogenesis but not collateral growth is associated with ischemia after femoral artery occlusion. Am J Physiol 273: H1255–H1265, 1997

    PubMed  CAS  Google Scholar 

  8. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Babiak A, Bithler A, Wiesnet M, Busse R, Schaper J, Schaper W: Ultrastructure and molecular histology of rabbit hindlimb collateral artery growth. Virchows Arch 436: 257–270, 2000

    Article  PubMed  CAS  Google Scholar 

  9. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Schaper W: Contribution of arteriogenesis and angiogenesis to postocclusive hindlimb perfusion in different mouse strains. J Mol Cell Cardiol 34: 775–787, 2002

    Article  PubMed  CAS  Google Scholar 

  10. Semenza GL, Wang GL: A nuclear factor induced by hypoxia viade novoprotein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454, 1992

    PubMed  CAS  Google Scholar 

  11. Wang GL, Semenza GL: Characterization of hypoxia-inducible factor 1 and regulation of the DNA binding activity by hypoxia. J Biol Chem 268: 21513–21518, 1993

    PubMed  CAS  Google Scholar 

  12. Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor I. J Biol Chem 269: 23757–23763, 1994

    PubMed  CAS  Google Scholar 

  13. Levy AP, Levy NS, Wegner S, Goldberg MA: Transcriptional regulation of the rat vascular endothelial growth factor by hypoxia. J Biol Chem 270: 13333–13340, 1995

    Article  PubMed  CAS  Google Scholar 

  14. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16: 4604–4613, 1996

    PubMed  CAS  Google Scholar 

  15. Richard DE, Berra E, Pouyssegur J: Angiogenesis: How a tumor adapts to hypoxia. Biochem Biophys Res Commun 266: 718–722, 1999

    Article  PubMed  CAS  Google Scholar 

  16. Vincent KA, Shyu KG, Luo Y, Magner M, Tio RA, Jiang C, Goldberg MA, Akita GY, Gregory RJ, Isner JM: Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIFI alphaNP16 hybrid transcription factor. Circulation 102: 2255–2261, 2000

    Article  PubMed  CAS  Google Scholar 

  17. Jin KL, Mao XO, Nagayama T, Goldsmith PC, Greenberg DA: Induction of vascular endothelial growth factor and hypoxia-inducible factor-1 alpha by global ischemia in rat brain. Neuroscience 99: 577–585, 2000

    Article  PubMed  CAS  Google Scholar 

  18. Wurzel J, Goldman BI: Angiogenesis factors in acute myocardial ischemia and infarction.New Engl J med 343: 148–149, 2000

    Article  PubMed  CAS  Google Scholar 

  19. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA: Early expression of angiogenesis factors in acute myocardial ischemia and infarction. New Engl J Med 342: 626–633, 2000

    Article  PubMed  CAS  Google Scholar 

  20. Marti HJ, Bernaudin M, Bellail A, Schoch H, Euler M, Petit E, Risau W: Hypoxia-induced vascular endothelial growth factor expression precedes neovascularization after cerebral ischemia. Am J Pathol 156: 965–976, 2000

    Article  PubMed  CAS  Google Scholar 

  21. Li J, Post M, Volk R, Gao Y, Li M, Metais C, Sato K, Tsai J, Aird W, Rosenberg RD, Hampton TG Selike F, Carmeliet P, Simons M: PR39, a peptide regulator of angiogenesis. Nature Med 6: 49–55, 2000

    Article  PubMed  CAS  Google Scholar 

  22. Gorlach A, Camenisch G, Kvietikova I, Vogt L, Wenger RH, Gassmann M: Efficient translation of mouse hypoxia-inducible factor-1 alpha under normoxic and hypoxic conditions. Biochim Biophys Acta 1493: 125–134, 2000

    Article  PubMed  CAS  Google Scholar 

  23. Kawata H, Yoshida K, Kawamoto A, Kurioka H, Takase E, Sasaki Y, Hatanaka K, Kobayashi M, Ueyama T, Hashimoto T, Dohi K: Ischemic preconditioning upregulates vascular endothelial growth factor mRNA expression and neovascularization via nuclear trans-location of protein kinase C epsilon in the rat ischemic myocardium. Circ Res 88: 696–704, 2001

    Article  PubMed  CAS  Google Scholar 

  24. Reimann J, Irintchev A, Wernig A: Regenerative capacity and the number of satellite cells in soleus muscles of normal and mdx mice. Neuromusc Dis 10: 276–282, 2000

    Article  PubMed  CAS  Google Scholar 

  25. Barbero A, Benelli R, Minghelli S, Tosetti F, Dorcaratto A, Ponzetto C, Wernig A, Cullen MJ, Albini A, Noonan DM: Growth factor supplemented matrigel improves ectopic skeletal muscle formation - a cell therapy approach. J Cell Physiol 186: 183–192, 2001

    Article  PubMed  CAS  Google Scholar 

  26. Sabourin LA, Rudnicki MA: The molecular regulation of myogenesis. Clin Genet 57: 16–25, 2000

    Article  PubMed  CAS  Google Scholar 

  27. Podzuweit T, Beck H, Muller A, Bader R, Gorlach G, Scheid HH: Absence of xanthine oxidoreductase activity in human myocardium. Cardiovasc Res 25: 820–830, 1991

    Article  PubMed  CAS  Google Scholar 

  28. Bergmeyer HU: Methods of Enzymatic Analysis. Weinheim, 1985, VI and VIII

    Google Scholar 

  29. Rahimtoola SH: The hibernating myocardium. Am Heart J 117: 211–221, 1989

    Article  PubMed  CAS  Google Scholar 

  30. Schaper W: ‘Hibernating Myocardium’. Zeit fiir einen Paradigmenwechsel? Z Kardiol 80: 712–715, 1991

    PubMed  CAS  Google Scholar 

  31. Elsasser A, Schaper J: Hibernating myocardium: adaptation or degeneration? Basic Res Cardiol 90: 47–48, 1995

    PubMed  CAS  Google Scholar 

  32. Sauer A, Scholz D, Babiak A, Schaper W: Infra-red thermography is a very sensitive method to study arteriogenesis. J Mol Cell Cardiol 31: A103, 1999

    Google Scholar 

  33. Gotzfried S, Thomas S, Reutebuch OT, Bauer EP, Klovekorn WP, Podzuweit T: Circulation 100: A1980, 1999

    Google Scholar 

  34. Fleischer KJ, Goldschmidt-Clermont PJ, Fonger JD, Hutchins GM, Hruban RH, Baumgartner WA: One-month histologic response of transmyocardial laser channels with molecular intervention. Ann Thorac Surg 62: 1051–1058, 1996

    Article  PubMed  CAS  Google Scholar 

  35. Malekan R, Reynolds C, Narula N, Kelley ST, Suzuki Y, Bridges CR: Angiogenesis in transmyocardial laser revascularization. A nonspecific response to injury. Circulation 98(suppl 19): 1162–1165; discussion 1166, 1998

    Google Scholar 

  36. Gassier N, Rastar F, Hentz MW: Angiogenesis and expression of tenascin after transmural laser revascularization. Histol Histopathol 14: 81–87, 1999

    Google Scholar 

  37. Bridges CR: Angiogenesis in myocardial laser `revascularization’. Herz 25: 579–588, 2000

    Article  PubMed  CAS  Google Scholar 

  38. Simons M: Therapeutic coronary angiogenesis: a fronte praecipitium a tergo lupi? Am J Physiol ¡ª Heart Circ Physiol 280: H1923–H1927, 2001

    PubMed  CAS  Google Scholar 

  39. Domkowski PW, Biswas SS, Steenbergen C, Lowe JE: Histological evidence of angiogenesis 9 months after transmyocardial laser revascularization. Circulation 103: 469–471, 2001

    Article  PubMed  CAS  Google Scholar 

  40. Hudlicka O, Brown MD, Silgram H: Inhibition of capillary growth in chronically stimulated rat muscles by N(G)-nitro-l-arginine, nitric oxide synthase inhibitor. Microvasc Res 59: 45–51, 2000

    Article  PubMed  CAS  Google Scholar 

  41. Linderman JR, Kloehn MR, Greene AS: Development of an implantable muscle stimulator: Measurement of stimulated angiogenesis and poststimulus vessel regression. Microcirculation 7: 119–128, 2000

    PubMed  CAS  Google Scholar 

  42. Egginton S, Zhou A-L, Brown MD, Hudlicka 0: Unortodox angiogenesis in skeletal muscle. Cardiovasc Res 49: 634–646, 2001

    Article  PubMed  CAS  Google Scholar 

  43. Vierck J, O’Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, Dodson M: Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int 24: 263–272, 2000

    Article  PubMed  CAS  Google Scholar 

  44. Wanek Li, Snow MH: Activity-induced fiber regeneration in rat soleus muscle. Anat Rec 258: 176–185, 2000

    PubMed  CAS  Google Scholar 

  45. Wahl SM, Wong H, McCartney-Francis N: Role of growth factors in inflammation and repair. J Cell Biochem 40: 193–199, 1989

    Article  PubMed  CAS  Google Scholar 

  46. Hubner G, Brauchle M, Smola H, Madlener M, Fassler R, Werner S: Differential regulation of pro-inflammatory cytokines during wound healing in normal and glucocorticoid-treated mice. Cytokine 8: 548–556, 1996

    Article  PubMed  CAS  Google Scholar 

  47. Moore K: Cell biology of chronic wounds: The role of inflammation. J Wound Care 8: 345–348, 1999

    PubMed  CAS  Google Scholar 

  48. Gillitzer R, Goebeler M: Chemokines in cutaneous wound healing. J Leuk Biol 69: 513–521, 2001

    CAS  Google Scholar 

  49. McCourt M, Wang JH, Sookhai S, Redmond HP: Proinflammatory mediators stimulate neutrophil-directed angiogenesis. Arch Surg 134: 1325–1331; discussion 1331–1332, 1999

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Scholz, D., Tomas, S., Sass, S., Podzuweit, T. (2003). Angiogenesis and myogenesis as two facets of inflammatory post-ischemic tissue regeneration. In: Zahradka, P., Wigle, J., Pierce, G.N. (eds) Vascular Biochemistry. Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0298-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0298-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5010-1

  • Online ISBN: 978-1-4615-0298-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics