Skip to main content

Bioenergetics—Conversion of Biochemical to Mechanical Energy in the Cardiac Muscle

  • Chapter
New and Renewable Technologies for Sustainable Development

Abstract

Life is sustained by the continuous conversion of biochemical energy to mechanical energy, which is required to maintain the various functions of living organisms. This wide range of energetic activities depends on rotary and linear molecular (protein) motors of nanometer scale, which propel (bacteria, sperms), transport (messengers in neural network, cell division) generate high-energy metabolites (ATPsynthase) and perpetuate motion (muscle shortening).

This study relates to the linear molecular motor, myosin, which is energized by ATP (adenosine triphosphate) hydrolysis, and actuates muscle filament contraction. The actin-myosin filaments make up the intracellular contractile apparatus, the sarcomeres, and their relative motion, sliding one over the other, determines the functional characteristics of the contracting heart muscle.

The study explores the relationship between the biochemical energy consumption and the mechanical output of the motor units of the heart muscle. The analysis is based on coupling motor unit dynamics with free calcium binding kinetics, which regulates the motor unit activity. The calcium binds to the regulatory proteins of the contractile filaments and regulates the number of activated myosin motor units. The analysis quantifies the conversion efficiency and the determinants of the muscle’s economy. The intracellular interplay between efficiency and economy determines the adaptability of the heart muscle to the prevailing loading conditions. The analysis highlights the intracellular mechanisms and the adaptive processes that allow the heart to optimize its function under various loading conditions.

Whereas the thermodynamic efficiency of the overall metabolic transformation from biochemical energy to mechanical energy of the whole organ is 25–35%, the efficiency of energy transduction from ATP to mechanical energy ranges between 50 to 70%. This high efficiency of energy conversion reflects the extremely high efficiency of the myosin motor unit, wherein the ATPase enzyme is instrumental in ATP hydrolysis ATP + H2O ↔ ADP+P reaction and the production of mechanical energy. Finally, we discuss the notion that man is challenged by nature’s functional design in his pursuit of new horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Woledge R.C., Reilly P.J. Molar Enthalpy Change to Hydrolysis of Phosphocreatine under Conditions in Muscle Cell. Biophys. J. 1988; 54: 97–104.

    Article  CAS  Google Scholar 

  2. Wang H., Oster G. Energy Tranduction in the F, Motor of ATP Synthase. Nature 1998; 396: 279–282.

    Article  CAS  Google Scholar 

  3. Oster G., Wang H. ATP Synthase: Two Motors, Two Fuels. Structure 1999; 7 (4): 67–72.

    Article  Google Scholar 

  4. Fisher M.E., Kolomeisky A.B. The Force Exerted by a Molecular Motor. Proc. Nat. Acad. Sci. USA. 96:6597–6602, 1999.

    Article  CAS  Google Scholar 

  5. Eisenberg E., Hill T.L. Muscle Contraction and Free Energy Transduction in Biological System. Science. 1985; 227: 999–1006.

    Article  CAS  Google Scholar 

  6. Landesberg A. End Systolic Pressure-Volume Relation Based on the Intracellular Control of Contraction. Am J Physiol. 1996; 270 (Heart Circ. Physiol. 39):H338–H349.

    CAS  Google Scholar 

  7. Landesberg A. Intracellular Mechanism in Control of Myocardial Mechanics and Energetics. In Analytical and Quantitative Cardiology: From Genetics to Function. S. Sideman and R. Beyar, eds.NY Plenum. 1997; 430: 75–87.

    Chapter  Google Scholar 

  8. Landesberg A., Sideman S. Coupling Calcium Binding to Troponin-C and Xb Cycling Kinetics in Skinned Cardiac Cells. Am J. Physiol. 1994; 266 (Heart Circ. Physiol. 35): H1261–H1271.

    Google Scholar 

  9. Landesberg A., Sideman S. Mechanical Regulation in the Cardiac Muscle by Coupling Calcium Binding to Troponin-C and Xb Cycling. A Dynamic Model. Am. J. Physiol. 1994; 267 (Heart Circ Physiol 36): H779–H795.

    CAS  Google Scholar 

  10. Landesberg A., Sideman S. Regulation of Energy Consumption in the Cardiac Muscle: Analysis of Isometric Contractions. A Dynamic Model. Am. J. Phsyiol. 1999; 276: H998–H1011.

    CAS  Google Scholar 

  11. Landesberg A., Sideman S. Force Velocity Relationship and Biochemical to Mechanical Energy Conversion by the Sarcomere. Am. J. Physiol., in press, 2000.

    Google Scholar 

  12. Landesberg A., ter Keurs HED.T. Regulation of Force Output by the Velocity of Sarcomere Shortening in Rat Cardiac Trabecular Circulation. 1997; 96 (8): 2906.

    Google Scholar 

  13. Landesberg A., ter Keurs HEDJ. Crossbridge Dynamics during Shortening is Determined by Two Kinetic Components. J. Mol. Cell. Cardiol. 1998; 30: A171.

    Google Scholar 

  14. Landesberg A., Liu P., Lichtenstein O., Shofti R., Beyar R., Sideman S. Effect of Ejection Velocity on Pressure Generation in the Heart. In situ canine studies. VIII Mediterranean Conf. on Medical and Biological Engineering and Computing, Limassol, Cyprus, pp. 1–5, 1998.

    Google Scholar 

  15. Beyar R., Sideman S. A Computer Study of the Left Ventricular Performance Based on Fiber Structure, Sarcomere Dynamics, and Transmural Electrical Propagation Velocity. Circ. Res. 1984; 55: 358–75.

    Article  CAS  Google Scholar 

  16. Campbell K.B., Shroff S.G., Kirkpatrick R.D. Short Time Scale Left Ventricle Systolic Dynamics. Circ. Res. 1991; 68:1532–48.

    Article  CAS  Google Scholar 

  17. Sagawa K., Maughan L., Suga H., Sunagawa K. Cardiac Contraction and the Pressure-Volume Relationship. London, UK: Oxford Univ Press, 1988.

    Google Scholar 

  18. Suga H. Ventricular Energetics. Physiol. Rev. 1990; 70:247–277.

    CAS  Google Scholar 

  19. Hisano G., Cooper IV. Correlation of Force-Length Area with Oxygen Consumption in Ferret Papillary Muscle. Circ. Res. 1987; 61:318–28.

    Article  Google Scholar 

  20. Landesberg A., Zhang Y.M., ter Keurs HEDJ. Regulation of Tension-Length Free Calcium Relationship in the Skinned Rat Trabeculae. J. Biophysics, in press 2000.

    Google Scholar 

  21. Peterson J.N., Hunber W.C., Berman M.R. Estimated Time Course of Calcium Bound to Troponin-c during Relaxation in Isolated Cardiac Muscle. Am. J. Cardiol. 1977; 40: 748–53.

    Article  Google Scholar 

  22. Landesberg A., Sideman S. Calcium Kinetics and Mechanical Regulation of Cardiac Muscle. In Interactive Phenomena in the Cardiac System. Sideman S., Beyar R., eds. Plenum Publishing Corp., NY, 1993; 59–77.

    Chapter  Google Scholar 

  23. Landesberg A. Intracellular Mechanism in Control of Myocardial Mechanics and Energetics. In Analytical and Quantitative Cardiology: From Genetics to Function, S. Sideman and R. Beyar. eds. New York Plenum, 1997; 430: 75–87.

    Chapter  Google Scholar 

  24. Allen D.G., Kentish J.C. The Cellular Basis of the Length Tension Regulation in Cardiac Muscle. J. Mol. Cellulal Biol., 1985; 17:821–40.

    CAS  Google Scholar 

  25. Eisenberg E., Hill T.L. Muscle Contraction and Free Energy Transduction in Biological System. Science. 1985; 227: 999–1006.

    Article  CAS  Google Scholar 

  26. Fozzard H.A., Haber E., Jennings R.B., Katz A.M., Morgan H.E. The Heart and Cardiovascular System. Scientific Foundations. Second Edition. NY: Raven Press, 1991: 1281–95.

    Google Scholar 

  27. Hill A.V. The Heat of Shortening and Dynamic Constants of Shortening. Proc. Royal Soc. London (Biol) 1938; 126: 136–195.

    Google Scholar 

  28. Landesberg A., Livshitz L., ter Keurs HEDJ. The Effect of Sarcomere Shortening Velocity on Force Generation, Analysis of and Verification of Models for Crossbridge Dynamics. W. Herzog, ed. John Wiley and Sons, in press 2000.

    Google Scholar 

  29. Mulieri L.A., Luhr G., Tvefry J., Alpert N.R. Metal-Film Thermopiles for Use with Rabbit Right Ventricular Papillary Muscle. Am. J. Physiol. 1977; 233:C146–C156.

    CAS  Google Scholar 

  30. Cooper G.N. Load and Length Regulation of Cardiac Energetics. Annu. Rev. Physiol. 1990; 52: 505–522.

    Article  Google Scholar 

  31. Alpert N.R., Mulieri L.A., Hasenfuss G., Holubarsch C. Optimization of Myocardial Function. In Myocardial Optimization and Efficiency: Evolutionary Aspects and Philosophy of Science Considerations. D. Burkhoff, J. Schaefer, K. Schaffne, D.T. Yue, eds. Springer-Verlag: NY, 1994; 29–41.

    Google Scholar 

  32. Alpert N.R., Mulieri L.A., Hasenfuss G. Myocardial Chemo-Mechanical Energy Transduction. In: The Heart and Cardiovascular System, 2nd Ed; HA Fozzard et al eds. Raven Press, NY, 1992; 111–128.

    Google Scholar 

  33. Alpert N.R., Mullieri L.A. Human Heart Failure: Determinants of Ventricular Dysfunction. In Analytical and Quantitative Cardiology, S. Sideman and R. Beyar, eds.Plenum Press, NY.1997; 97–108.

    Chapter  Google Scholar 

  34. Hasenfuss G., Mullieri L.A., Blanchard E.M., Holubarsch C.H., Leavitt B.J., Ittleman F., Alpert N.R. Energetic of Isometric Force Development in Control and Volume Overload Human Myocardium: Comparison with Animal Species. Cir. Res. 1991; 68: 836–846.

    Article  CAS  Google Scholar 

  35. Suga H., Goto Y., Kawaguchi O., Hata K., Takasago T., Sachi A., Taylor T.W. Ventricular Perspective of Efficiency. In Myocardial Optimization and Efficiency, Evolutionary Aspects and Philosphy of Science Consideration. D. Burkhoff, J. Schaefer, K. Schaffner, D.T. Yue (eds.) Basic Res. Cardiol., Springer-Verlag, NY. 1993; 88: 43–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sideman, S., Landesberg, A. (2002). Bioenergetics—Conversion of Biochemical to Mechanical Energy in the Cardiac Muscle. In: Afgan, N.H., da Graça Carvalho, M. (eds) New and Renewable Technologies for Sustainable Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0296-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0296-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5009-5

  • Online ISBN: 978-1-4615-0296-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics