Advertisement

EEG Theta, Memory, and Sleep

  • Wolfgang Klimesch

Abstract

In contrast to the alpha rhythm, which is the dominant large scale oscillation in the human EEG, most of what is known about the theta rhythm stems from animal research. Therefore, the most important properties and the functional meaning of the hippocampal EEG will be reviewed first. Research with human subjects then will be reported, which indicates that an event-related increase in theta power is associated with increasing memory demands in a similar way as was found in animal research for the hippocampal EEG. Finally, it will be shown that sleep is important for memory consolidation. The involvement of the hippocampal formation will be discussed.

Keywords

Episodic Memory Memory Consolidation Theta Rhythm Band Power Theta Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnolds, D.E.A.T., Lopes Da Silva, F.H., Aitinik, J.W., & Boeijinga, W. (1980). The spectral properties of hippocampal EEG related to behavior in man. Electroencephalography and Clinical Neurophysiology, 50, 324–328.PubMedCrossRefGoogle Scholar
  2. Bland, B.H. (1986). The physiology and pharmacology of hippocampal formation theta rhythms. Progress in Neurobiology, 26, 1–54.PubMedCrossRefGoogle Scholar
  3. Born, J., & Fehm, H.L. (1998). Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Experimental and Clinical Endocrinology & Diabetes, 106, 153–164.CrossRefGoogle Scholar
  4. Born, J., DeKloet, R., Wenz, H., Kern, W., & Fehm, H.L. (1991). Changes in slow wave sleep after glucocorticoids and antimineralocorticoids: A cue for central type I corticotropin releasing hormone in humans. Journal of Clinical Endocrinology and Metabolism, 23, 126–130.Google Scholar
  5. Born, J., Hansen, K., Marshall, L., Moölle, M., & Fehm, H.L. (1999). Timing the end of nocturnal sleep. Nature, 397, 29–30.PubMedCrossRefGoogle Scholar
  6. Born, J., & Plihal, W. (2000). Gedächtnisbildung im Schlaf: Die Bedeutung von Schlafstadien und Strellhormonfreisetzung. Psychologische Rundschau, 51, 198–208.CrossRefGoogle Scholar
  7. Brenner, R.P., Ulrich, R.F., Spiker, D.G., Scalbassi, R.J., Reynolds, C.F., III, Marin, R.S., & Boller, F. (1986). Computerized EEG spectral analysis in elderly normal, demented and depressed subjects. Electroencephalography and Clinical Neurophysiology, 64, 483–492.PubMedCrossRefGoogle Scholar
  8. Buzsaki, G., Leung, L., & Vanderwolf, C. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Research Reviews, 6, 139–171.CrossRefGoogle Scholar
  9. Buzsaki, G., Bragin, A., Chrobak, J.J., Nadasdy, Z., Sik, A., Hsu, M., & Ylinen, A. (1994) Oscillatory and intermittent synchrony in the hippocampus: Relevance to memory trace formation. In G. Buzsaki, R. Llinas, W. Singer, A. Berthoz, & Y. Christen (Eds.), Temporal coding in the brain (pp. 145–172). Berlin, Heidelberg: Springer-Verlag.CrossRefGoogle Scholar
  10. Buzsaki, G. (1989). A two-stage model of memory trace formation: A role for “noisy”, brain states. Neuroscience, 31, 551–570.PubMedCrossRefGoogle Scholar
  11. Buzsaki, G. (1996). The hippocampo-neocortical dialogue. Cerebral Cortex, 6, 81–92.PubMedCrossRefGoogle Scholar
  12. Buzsaki, G. (1998). Memory consolidation during sleep: A neurophysiological perspective. Journal of Sleep Research, 7, 17–23.PubMedCrossRefGoogle Scholar
  13. Castalado, V., Krynicki, V., & Goldstein, J. (1974). Sleep stages and verbal memory. Perceptual and Motor Skills, 39, 1023–1030.CrossRefGoogle Scholar
  14. Cartwright, R.D. (1972). Problem solving in REM, NREM, and waking. Psychophysiology, 9, 108.Google Scholar
  15. Christian, W. (1984). Das Elektroencephalogramm (EEG) im höheren Lebensalter. Nervenarzt, 55, 517–524.PubMedGoogle Scholar
  16. Coben, L.A., Danziger, W., & Storandt, M. (1985). A longitudinal EEG study of mild senile dementia of Alzheimer type: Changes at 1 year and at 2.5 years. Electroencephalograph and Clinical Neurophysiology, 61, 101–112.CrossRefGoogle Scholar
  17. Doppelmayr, M., Klimesch, W., Pachinger, Th., & Ripper, B. (1998a). Individual differences in brain dynamics: Important implications for the calculation of event-related band power measures. Biological Cybernetics, 79, 49–57.PubMedCrossRefGoogle Scholar
  18. Doppelmayr, M., Klimesch, W., Pachinger, Th., & Ripper, B. (1998b). The functional significance of absolute power with respect to event-related desynchronization. Brain Topography, 11, 133–140.PubMedCrossRefGoogle Scholar
  19. Eckstrand, B.R., Sullivan, M.G., Parker, D.F., & West, J.N. (1971). Spontaneous recovery and sleep. Journal of Experimental Psychology, 88, 142–144.CrossRefGoogle Scholar
  20. Eckstrand, B.R., Barett, T.R., West, J.N., & Maier, W.G. (1977). The effect of sleep on human longterm memory. In R.R. Drucker-Colin & J.L. McGaugh (Eds.), Neurobiology of sleep and memory (pp, 419–438). New York: Academic Press.Google Scholar
  21. Feldman, R., & Dement, W. (1968). Possible relationships between REM sleep and memory consolidation. Psychophysiology, 5, 243–251.Google Scholar
  22. Gevins, A., Smith, M.E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7, 374–385.PubMedCrossRefGoogle Scholar
  23. Givens, B. (1996). Stimulus-evoked resetting of the dentate theta rhythm: relation to working memory. NeuroReport, 8, 159–163.PubMedCrossRefGoogle Scholar
  24. Gould, E., Tanapat, P., McEwen, B., Flügge, G., & Fuchs, E. (1998). Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proceedings of the National Academy of Science of the USA, 95, 3168–3171.CrossRefGoogle Scholar
  25. Greenberg, R., Pearlman, C., Schwartz, W.R., & Grossman, H. (1983). Memory, emotion, and REM sleep. Journal of Abnormal Psychology, 92, 378–381.PubMedCrossRefGoogle Scholar
  26. Greenstein, Y.J., Pavlides, C., & Winson, J. (1988) Long-term potentiation in the dentate gyrus is preferentially induced at theta rhythm periodicity. Brain Research, 438, 331–334.PubMedCrossRefGoogle Scholar
  27. Jenkins, J.G., & Dallenbach, K.M. (1924). Oblivicence during sleep and waking. American Journal of Psychology, 35, 605–612.CrossRefGoogle Scholar
  28. Kahana, M.J., Sekuler, R., Caplan, J.B., Kirschen, M., & Madsen, J.R. (1999). Human theta oscillations exhibit task dependence during virtual maze navigation. Nature, 399, 781–784.PubMedCrossRefGoogle Scholar
  29. Karni, A., Tanne, D., Rubenstein, B.S., Askenasy, J.J.M., & Sagi, D. (1994). Dependence on REM sleep of overnight improvement of a perceptual skill. Science, 265, 679–681.PubMedCrossRefGoogle Scholar
  30. Klimesch, W. (1994). The structure of long-term memory: A connectivity model for semantic processing. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  31. Klimesch, W. (1995). Memory processes described as brain oscillations in the EEG-alpha and theta band. Psycoloquy. 95.6.06. (electronic journal) memory-brain.1.klimesch.Google Scholar
  32. Klimesch, W. (1996). Memory processes, brain oscillations and EEG synchronization. International Journal of Psychophysiology, 24, 61–100.PubMedCrossRefGoogle Scholar
  33. Klimesch, W., Schimke, H., & Schwaiger, J. (1994). Episodic and semantic memory: An analysis in the EEG-theta and alpha band. Electroencephalography and Clinical Neurophysiology, 91, 428–441.PubMedCrossRefGoogle Scholar
  34. Klimesch, W., Doppelmayr, M., Russegger, H., & Pachinger, Th. (1996). Theta band power in the human scalp EEG and the encoding of new information. Neurokeport, 7, 1235–1240.CrossRefGoogle Scholar
  35. Klimesch, W., Doppelmayr, M., Pachinger, Th., & Ripper, B. (1997a). Brain oscillations and human memory performance: EEG correlates in the upper alpha and theta bands. Neuroscience Letters, 238, 9–12.PubMedCrossRefGoogle Scholar
  36. Klimesch, W., Doppelmayr, M., Pachinger, Th., & Russegger, H. (1997b). Event-related desynchronization in the alpha band and the processing of semantic information. Cognitive Brain Research, 6, 83–94.PubMedCrossRefGoogle Scholar
  37. Klimesch, W., Doppelmayr, M., Schimke, H., & Ripper, B. (1997c). Theta synchronization in a memory task. Psychophysiology, 34, 169–176.PubMedCrossRefGoogle Scholar
  38. Klimesch, W., Vogt, F., & Doppelmayr, M. (2000). Interindividual differences in alpha and theta power reflect memory performance. Intelligence, 27, 347–362.CrossRefGoogle Scholar
  39. Klimesch, W., Doppelmayr, M., Stadler, W., Pollhuber, D., & Röhm, D. (2001). Episodic retrieval is reflected by a process specific increase in human EEG theta activity. Neuroscience Letters, 302, 49–52.PubMedCrossRefGoogle Scholar
  40. Kroll, N.E.A., & Klimesch, W. (1992). Semantic memory. Complexity or connectivity? Memory & Cognition, 20, 192–210.CrossRefGoogle Scholar
  41. Larson, J., Wong, D., & Lynch, G. (1986). Patterned stimulation at the theta frequency is optimal for the induction of hippocampal long-term potentiation. Brain Research, 368, 347–350.PubMedCrossRefGoogle Scholar
  42. Lisman, J.E., & Idiart, M.A.P. (1995). Storage of 7±2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.PubMedCrossRefGoogle Scholar
  43. Lopes da Silva, F.H. (1992) The rhythmic slow activity (theta) of the limbic cortex: An oscillation in search of a function. In E. Basar & T.H. Bullock (Eds.), Induced rhythms in the brain (pp. 83–102). Boston: Birkhäuser.CrossRefGoogle Scholar
  44. Lewin, I., & Glaubman, H. (1975). The effect of REM deprivation: Is it detrimental, beneficial, or neutral? Psychophysiology, 12, 349–353.PubMedCrossRefGoogle Scholar
  45. Maren, St., DeCola, J., Swain, R., Fanselow, M., & Thompson, R. (1994). Parallel Augmentation of hippocampal long-term potentiation, theta rhythm, and contextual fear conditioning in water-deprived rats. Behavioral Neuroscience, 108, 44–56.PubMedCrossRefGoogle Scholar
  46. Markowitsch, H. (1996). Neuropsychologie des Gedächtnisses. Spektrum der Wissenschaft, 9, 52–61.Google Scholar
  47. Miller, R. (1991). Cortico-hippocampal interplay and the representation of contexts in the brain. Berlin: Springer.Google Scholar
  48. Montoya, Ch., Heynen, A., Faris, P., & Sainsbury, R.(1989). Modality specific type 2 theta production in the immobile rat. Behavioral Neuroscience, 103, 106–111.PubMedCrossRefGoogle Scholar
  49. Muzio, J.W., Roffwarg, H.P., Anders, C.B., & Muzio, L.G. (1972). Retention of rote learned meaningful verbal material and alternation in the normal EEG pattern. Psychophysiology, 9, 108.Google Scholar
  50. Niedermeyer, E. (1993). Normal aging and transient cognitive disorders in the elderly. In E. Niedermeyer & F.H. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields, (pp, 329–338). Baltimore: Williams & Wilkins.Google Scholar
  51. O’Keefe, J. (1993). Hippocampus, theta and spatial memory. Current Opinion in Neurobiology, 3, 917–924.PubMedCrossRefGoogle Scholar
  52. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in freely moving rats. Brain Research, 34, 171–175.PubMedCrossRefGoogle Scholar
  53. O’Keefe, J., & Reece, M. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317–330.PubMedCrossRefGoogle Scholar
  54. O’Keefe, J., & N. Burgess, N. (1999). Theta activity, virtual navigation and the human hippocampus. Trends in Cognitive Science, 3, 403–406.CrossRefGoogle Scholar
  55. Pavlides, C., Watanabe, Y., Magarinos, A.M., & McEwen, B.S. (1995). Opposing roles of type I and Type II adrenal steroid receptors in hippocampal long-term potentiation. Neuroscience, 68, 387–394.PubMedCrossRefGoogle Scholar
  56. Petsche, H., Stumpf, C., & Gogolak, G. (1962). The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus. Electroencephalography and Clinical Neurophysiology, 19, 25–33.CrossRefGoogle Scholar
  57. Pfurtscheller, G., & Aranibar, A. (1977). Event-related cortical synchronization detected by power measurements of scalp EEG. Electroencephalography and Clinical Neurophysiology, 42, 817–826.PubMedCrossRefGoogle Scholar
  58. Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9, 534–547.CrossRefGoogle Scholar
  59. Plihal, W., & Born, J. (1999a). Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology, 36, 571–582.PubMedCrossRefGoogle Scholar
  60. Plihal, W., & Born, J. (1999b). Memory consolidation in human sleep depends on inhibition of glucocorticoid release. Neuroreport, 10, 2741–2747.PubMedCrossRefGoogle Scholar
  61. Plihal, W., Pietrowsky, R., & Born, J. (1999). Dexamethasone blocks sleep induced improvement of declarative memory. Psychoneuroendocrionology, 24, 312–331.Google Scholar
  62. Sarnthein, J., Petsche, H., Rappelsberger, P., Shaw, G.L., & von Stein, A. (1998). Synchronization between prefrontal and posterior association cortex during human working memory. Proceedings of the National Academy of Science of the USA, 95, 7092–7096.CrossRefGoogle Scholar
  63. Schacter, D. (1977). EEG theta waves and psychological phenomena: A review and analysis. Biological Psychology, 5, 47–82.PubMedCrossRefGoogle Scholar
  64. Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery and Psychiatry, 20, 11–21.CrossRefGoogle Scholar
  65. Skaggs, W.E., & McNaughton, B.L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873.PubMedCrossRefGoogle Scholar
  66. Squire, L.R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99, 195–231.PubMedCrossRefGoogle Scholar
  67. Tesche, C.D., & Karhu, J. (2000). Theta oscillations index human hippocampal activation during a working memory task. Proceedings of the National Academy of Science of the USA, 97, 919–924.CrossRefGoogle Scholar
  68. Tilley, A.J., & Empson, J.A. (1978). REM sleep and memory consolidation. Biological Psychology, 6, 293–300.PubMedCrossRefGoogle Scholar
  69. Tilley, A.J. & Empson, J.A. (1981). Picture recall and recognition following total and selective sleep deprivation. In W.P. Koella (Ed.), Sleep’ 80 (pp. 367–369). Basel: Karger.Google Scholar
  70. Tulving, E. (1984). Precis of elements of episodic memory. Behavioral and Brain Sciences, 7, 223–268.CrossRefGoogle Scholar
  71. Vanderwolf, C.H. (1992). The electrocorticogram in relation to physiology and behavior: A new analysis. Electroencephalography and clinical Neurophysiology, 82, 165–175.PubMedCrossRefGoogle Scholar
  72. Vanderwolf, C., & Robinson, T. (1981). Retico-cortical activity and behavior: A critique of the arousal theory and a new synthesis. Behavioral and Brain Sciences, 4, 459–514.CrossRefGoogle Scholar
  73. VanHulzen, Z.J.M. (1986). Paradoxical sleep deprivation and information processing in the rat. Thèse, Universite de Nujmegen, Nijmegen.Google Scholar
  74. VanHulzen, Z.J.M., & Coenen, A.M. (1980). The pendulum technique for PS deprivation in rats. Physiology and Behavior, 25, 807–811.CrossRefGoogle Scholar
  75. Wilson, M.A., & McNaughton, B.L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679.PubMedCrossRefGoogle Scholar
  76. Winson, J. (1990). The meaning of dreams. Scientific American, 263, 42–48.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Wolfgang Klimesch
    • 1
  1. 1.Department of Physiological PsychologyUniversity of SalzburgAustria

Personalised recommendations