Skip to main content

Restorative Potential of Angiogenesis after Ischemic Stroke

  • Chapter

Abstract

In the past decade, numerous attempts have been made to rescue neurons in the ischemic brain focusing on neuroprotective strategies. So far no effective clinical therapies have been developed based on neuroprotective mechanisms. It is increasingly recognized through recent clinical trials that preventing the activation of injurious events, that often become irreversible within a few hours of ischemia onset, is a difficult, if not impossible, task in the clinical setting. It appears rational that future investigations should consider alternative or additional approaches that repair the damaged brain and promote functional restoration during chronic phases of the disease which may be more clinically feasible. This article will provide a perspective on the potential of vascular plasticity in enhancing functional recovery after ischemic stroke. Selected findings based on animal studies from our and other laboratories are reviewed to support the relevance of vascular plasticity to functional recovery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20:445–452.

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin RL, Stolowitz ML, Hood L, Wisnieski BJ (1996) Structural changes of tumor necrosis factor a associated with membrane insertion and channel formation. Proc Natl Acad Sci U S A 93:1021–1026.

    Article  PubMed  CAS  Google Scholar 

  • Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP (1995) Tumor necrosis factors a and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A 92:9328–9332.

    Article  PubMed  CAS  Google Scholar 

  • Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ (1997) Tumor necrosis factor-α. A mediator of focal ischemic brain injury. Stroke 28:1233–1244.

    Article  PubMed  CAS  Google Scholar 

  • Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-α-induced cell death. Science 274:782–784.

    Article  PubMed  CAS  Google Scholar 

  • Beutler B, Bazzoni F (1998) TNF, apoptosis and autoimmunity: a common thread? Blood Cells Mol Dis 24:216–230.

    Article  PubMed  CAS  Google Scholar 

  • Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16.

    Article  PubMed  CAS  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin α v beta 3 for angiogenesis. Science 264:569–571.

    Article  PubMed  CAS  Google Scholar 

  • Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2:788–794.

    Article  PubMed  CAS  Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868.

    Article  PubMed  CAS  Google Scholar 

  • Buttini M, Appel K, Sauter A, Gebicke-Haerter PJ, Boddeke HW (1996) Expression of tumor necrosis factor a after focal cerebral ischaemia in the rat. Neuroscience 71:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Carlson NG, Bacchi A, Rogers SW, Gahring LC (1998) Nicotine blocks TNF-α-mediated neuroprotection to NMDA by an α-bungarotoxin-sensitive pathway. J NeuroBiol 35:29–36.

    Article  PubMed  CAS  Google Scholar 

  • Chen HH, Chien CH, Liu HM (1994) Correlation between angiogenesis and basic fibroblast growth factor expression in experimental brain infarct. Stroke 25:1651–1657.

    Article  PubMed  CAS  Google Scholar 

  • Chen LE, Seaber AV, Wong GH, Urbaniak JR (1996) Tumor necrosis factor promotes motor functional recovery in crushed peripheral nerve. Neurochem Int 29:197–203.

    Article  PubMed  CAS  Google Scholar 

  • Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139–153.

    Article  PubMed  CAS  Google Scholar 

  • Cheung WM, Chen SF, Nian GM, Lin TN (2000) Induction of angiogenesis related genes in the contralateral cortex with a rat three-vessel occlusion model. Chin J Physiol 43:119–124.

    PubMed  CAS  Google Scholar 

  • Clemens JA, Stephenson DT, Smalstig EB, Dixon EP, Little SP (1997) Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats. Stroke 28:1073–1080; discussion 1080-1071.

    Article  PubMed  CAS  Google Scholar 

  • Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241.

    Article  PubMed  CAS  Google Scholar 

  • Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169.

    Article  PubMed  CAS  Google Scholar 

  • Dawson DA, Martin D, Hallenbeck JM (1996) Inhibition of tumor necrosis factor-α reduces focal cerebral ischemic injury in the spontaneously hypertensive rat. Neurosci Lett 218:41–44.

    Article  PubMed  CAS  Google Scholar 

  • de Moissac D, Mustapha S, Greenberg AH, Kirshenbaum LA (1998) Bcl-2 activates the transcription factor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBα. J Biol Chem 273:23946–23951.

    Article  PubMed  Google Scholar 

  • Declercq W, Denecker G, Fiers W, Vandenabeele P (1998) Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J Immunol 161:390–399.

    PubMed  CAS  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665.

    Article  PubMed  CAS  Google Scholar 

  • Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML (1992) tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480.

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC (1992) Dual role of tumor necrosis factor-α in angiogenesis. Am J Pathol 140:539–544

    PubMed  CAS  Google Scholar 

  • Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK (1996) Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Brain Res Mol Brain Res 36:287–291.

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35.

    PubMed  CAS  Google Scholar 

  • Feuerstein G, Wang X, Barone FC (1998) Cytokines in brain ischemia—the role of TNF α. Cell Mol NeuroBiol 18:695–701.

    Article  PubMed  CAS  Google Scholar 

  • Feuerstein GZ, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-α. Cerebrovasc Brain Metab Rev 6:341–360.

    PubMed  CAS  Google Scholar 

  • Fiers W, Beyaert R, Boone E, Cornelis S, Declercq W, Decoster E, Denecker G, Depuydt B, De Valck D, De Wilde G, Goossens V, Grooten J, Haegeman G, Heyninck K, Penning L, Plaisance S, Vancompernolle K, Van Criekinge W, Vandenabeele P, Vanden Berghe W, Van de Craen M, Vandevoorde V, Vercammen D (1995) TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 47:67–75.

    PubMed  CAS  Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor I and TNF receptor 2. J Neurosci 22:RC216.

    PubMed  Google Scholar 

  • Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K (1999) Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 19:5073–5082.

    PubMed  CAS  Google Scholar 

  • Gabriel C, Justicia C, Camins A, Planas AM (1999) Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res Mol Brain Res 65:61–69.

    Article  PubMed  CAS  Google Scholar 

  • Gary DS, Bruce-Keller AJ, Kindy MS, Mattson MP (1998) Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab 18:1283–1287.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Garcia A, Merida I, Martinez AC, Carrera AC (1997) Intermediate affinity interleukin-2 receptor mediates survival via a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 272:10220–10226.

    Article  PubMed  CAS  Google Scholar 

  • Gordon HM, Kucera G, Salvo R, Boss JM (1992) Tumor necrosis factor induces genes involved in inflammation, cellular and tissue repair, and metabolism in murine fibroblasts. J Immunol 148:4021–4027.

    PubMed  CAS  Google Scholar 

  • Grau AJ, Aulmann M, Lichy C, Meiser H, Buggle F, Brandt T, Grond-Ginsbach C (2001) Increased cytokine release by leucocytes in survivors of stroke at young age. Eur J Clin Invest 31:999–1006.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi T, Abe K, Suzuki H, Itoyama Y (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039–2044.

    Article  PubMed  CAS  Google Scholar 

  • Helisch A, Ware JA (1999) Therapeutic angiogenesis in ischemic heart disease. Thromb Haemost 82:772–780.

    PubMed  CAS  Google Scholar 

  • Hoefer IE, van Royen N, Rectenwald JE, Bray EJ, Abouharnze Z, Moldawer LL, Voskuil M, Piek JJ, Buschmann IR, Ozaki CK (2002) Direct evidence for tumor necrosis factor-α signaling in arteriogenesis. Circulation 105:1639–1641.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 18:83–88.

    Article  PubMed  CAS  Google Scholar 

  • Idriss HT, Naismith IH (2000) TNF α and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50:184–195.

    Article  PubMed  CAS  Google Scholar 

  • Kagan BL, Baldwin RL, Munoz D, Wisnieski BJ (1992) Formation of ion-permeable channels by tumor necrosis factor-α. Science 255:1427–1430.

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T, Alexis NE, Dietrich WD, Finklestein SP (1996) Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 16:542–547.

    Article  PubMed  CAS  Google Scholar 

  • Kim GM, Xu J, Song SK, Yan P, Ku G, Xu XM, Hsu CY (2001) Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21:6617–6625.

    PubMed  CAS  Google Scholar 

  • Kim I, Kim JH, Ryu YS, Liu M, Koh GY (2000) Tumor necrosis factor-α upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 269:361–365.

    Article  PubMed  CAS  Google Scholar 

  • Kinouchi K, Brown G, Pasternak G, Donner DB (1991) Identification and characterization of receptors for tumor necrosis factor-α in the brain. Biochem Biophys Res Commun 181:1532–1538.

    Article  PubMed  CAS  Google Scholar 

  • Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-l signaling. Cell 177:325–328.

    Article  Google Scholar 

  • Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634.

    Article  PubMed  CAS  Google Scholar 

  • Korhonen J, Polvi A, Partanen J, Alitalo K (1994) The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9:395–403.

    PubMed  CAS  Google Scholar 

  • Krikun G, Schatz F, Finlay T, Kadner S, Mesia A, Gerrets R, Lockwood CJ (2000) Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 275:159–163.

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J, Kaluza I, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–1798.

    Article  PubMed  CAS  Google Scholar 

  • Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, Kaluza J (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28:564–573.

    Article  PubMed  CAS  Google Scholar 

  • Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010.

    Article  PubMed  CAS  Google Scholar 

  • La Fleur M, Underwood JL, Rappolee DA, Werb Z (1996) Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-l. J Exp Med 184:2311–2326.

    Article  PubMed  Google Scholar 

  • Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141:2629–2634.

    PubMed  CAS  Google Scholar 

  • Lavine SD, Hofman FM, Ziokovic BV (1998) Circulating antibody against tumor necrosis factor-α protects rat brain from reperfusion injury. J Cereb Blood Flow Metab 18:52–58.

    Article  PubMed  CAS  Google Scholar 

  • Leker RR, Shohami E, Abramsky O, Ovadia H (1999) Dexanabinol; a novel neuroprotective drug in experimental focal cerebral ischemia. J Neurol Sci 162:114–119.

    Article  PubMed  CAS  Google Scholar 

  • Lin T, Wang C, Cheung W, Hsu C (2000) Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 20:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Lin TN, Te J, Lee M, Sun GY, Hsu CY (1997) Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res 49:255–265.

    Article  PubMed  CAS  Google Scholar 

  • Lindner H, Holler E, Ertl B, Multhoff G, Schreglmann M, Klauke I, Schultz-Hector S, Eissner G (1997) Peripheral blood mononuclear cells induce programmed cell death in human endothelial cells and may prevent repair: role of cytokines. Blood 89:1931–1938.

    PubMed  CAS  Google Scholar 

  • Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4:78–83.

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Young PR, McDonnell PC, White RF, Barone FC, Feuerstein GZ (1993) Cytokine-induced neutrophil chemoattractant mRNA expressed in cerebral ischemia. Neurosci Lett 164:125–128.

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necros is factor-α expression in ischemic neurons. Stroke 25:1481–1488.

    Article  PubMed  CAS  Google Scholar 

  • Liu XH, Xu H, Barks JD (1999) Tumor necrosis factor-α attenuates N-methyl-D-aspartatemediated neurotoxicity in neonatal rat hippocampus. Brain Res 851:94–104.

    Article  PubMed  CAS  Google Scholar 

  • Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501.

    Article  PubMed  CAS  Google Scholar 

  • Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61:351–359.

    Article  PubMed  CAS  Google Scholar 

  • Lyons MK, Anderson RE, Meyer FB (1991) Basic fibroblast growth factor promotes in vivo cerebral angiogenesis in chronic forebrain ischemia. Brain Res 558:315–320.

    Article  PubMed  CAS  Google Scholar 

  • Maiese K, Boniece I, DeMeo D, Wagner JA (1993) Peptide growth factors protect against ischemia in culture by preventing nitric oxide toxicity. J Neurosci 13:3034–3040.

    PubMed  CAS  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60.

    Article  PubMed  CAS  Google Scholar 

  • Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83:852–859.

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Kitamura Y, Okazaki M, Terai K, Taniguchi T (1999) Kainic acid-induced activation of nuclear factor-kappaB in rat hippocampus. Exp Brain Res 124:215–222.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697.

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng B, Baldwin SA, Smith-Swintosky VL, Keller J, Geddes JW, Scheff SW, Christakos S (1995) Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes: evidence for a cytoprotective response. J Neurosci Res 42:357–370.

    Article  PubMed  CAS  Google Scholar 

  • Montrucchio G, Lupia E, Battaglia E, Passerini G, Bussolino F, Emanuelli G, Camussi G (1994) Tumor necrosis factor α-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J Exp Med 180:377–382.

    Article  PubMed  CAS  Google Scholar 

  • Mustonen T, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129:895–898.

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Martin D, Hallenbeck JM (1997a) Neuroprotective effects of TNF binding protein in focal cerebral ischemia. Brain Res 778:265–271.

    Article  PubMed  CAS  Google Scholar 

  • Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997b) TNF-α pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490.

    Article  PubMed  CAS  Google Scholar 

  • Norrby K (1996) TNF-a and de novo mammalian angiogenesis. Microvasc Res 52:79–83.

    Article  PubMed  CAS  Google Scholar 

  • Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85.

    Article  PubMed  CAS  Google Scholar 

  • Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320.

    Article  PubMed  CAS  Google Scholar 

  • Price RJ, Skalak TC (1995) A circumferential stress-growth rule predicts arcade arteriole formation in a network model. Microcirculation 2:41–51.

    Article  PubMed  CAS  Google Scholar 

  • Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90.

    Article  PubMed  CAS  Google Scholar 

  • Rong Y, Baudry M (1996) Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J Neurochem 67:662–668.

    Article  PubMed  CAS  Google Scholar 

  • Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ (1994) The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 8:419–425.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci 18:130–136.

    Article  PubMed  CAS  Google Scholar 

  • Rothwell NJ, Strijbos PJ (1995) Cytokines in neurodegeneration and repair. Int J Dev Neurosci 13:179–185.

    Article  PubMed  CAS  Google Scholar 

  • Sairanen T, Carpen O, Karjalainen-Lindsberg ML, Paetau A, Turpeinen D, Kaste M, Lindsberg PJ (2001) Evolution of cerebral tumor necrosis factor-a production during human ischemic stroke. Stroke 32:1750–1758.

    Article  PubMed  CAS  Google Scholar 

  • Salminen A, Liu PK, Hsu CY (1995) Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 212:939–944.

    Article  PubMed  CAS  Google Scholar 

  • Sato TN, Tozawa Y, Deutsch D, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-l and Tie-2 in blood vessel formation. Nature 376:70–74.

    Article  PubMed  CAS  Google Scholar 

  • Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E, Marino MW, McIntosh TK (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A 96:8721–8726.

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Li R, Shiosaki K (1997) Inhibition of p75 tumor necrosis factor receptor by antisense oligonucleotides increases hypoxic injury and beta-amyloid toxicity in human neuronal cell line. J Biol Chem 272:3550–3553.

    Article  PubMed  CAS  Google Scholar 

  • Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250.

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor a in brain injury. Cytokine Growth Factor Rev 10:119–130.

    Article  PubMed  CAS  Google Scholar 

  • Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T (1997) Cytokine production in the brain following closed head injury: dexanabino1 (HD-211) is a novel TNF-α inhibitor and an effective neuroprotectant. J Neuroimmunol 72:169–177.

    Article  PubMed  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.

    Article  PubMed  CAS  Google Scholar 

  • Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, Scheff SW (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19:6248–6256.

    PubMed  CAS  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180.

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela G, Robinson R, Perez-Polo JR (1997) Inhibition of nuclear factor kappa B (NFkappaB) activity induces nerve growth factor-resistant apoptosis in PC12 cells. J Neurosci Res 47:155–162.

    Article  PubMed  CAS  Google Scholar 

  • Tamatani M, Che YR, Matsuzaki H, Ogawa S, Okado H, Miyake S, Mizuno T, Tohyama M (1999) Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 274:8531–8538.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka R, Miyasaka Y, Yada K, Ohwada T, Kameya T (1995) Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model. Stroke 26:2154–2158; discussion 2158-2159.

    Article  PubMed  CAS  Google Scholar 

  • Tang ED, Nunez G, Barr FG, Guan KL (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274:16741–16746.

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia LA, Pennica D, Goeddel DV (1993) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268:18542–18548.

    PubMed  CAS  Google Scholar 

  • Terrado J, Monnier D, Perrelet D, Vesin D, Jemelin S, Buurman WA, Mattenberger L, King B, Kato AC, Garcia I (2000) Soluble TNF receptors partially protect injured motoneurons in the postnatal CNS. Eur J Neurosci 12:3443–3447.

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele P, Declercq W, Vanhaesebroeck B, Grooten J, Fiers W (1995) Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol 154:2904–2913.

    PubMed  CAS  Google Scholar 

  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930.

    Article  PubMed  CAS  Google Scholar 

  • Wei L, Bolye MP, Yu SP (2001b) Roles of VEGF in angiogenesis and fuctional recovery after a focal cerebral ischemia in mice. J Cereb Bld Flow Metab 21:315.

    Google Scholar 

  • Wei L, Brunstrom J, Rovainen C, Woolsey T (1997) Mirovascular proliferation and remodeling after focal ischemia in rat barrel cortex. Abstr Soc for Neurosci 23:1730.

    Google Scholar 

  • Wei L, Erinjeri JP, Rovainen CM, Woolsey TA (2001a) Collateral growth and angiogenesis around cortical stroke. Stroke 32:2179–2184.

    Article  PubMed  CAS  Google Scholar 

  • Wilde GJ, Pringle AK, Sundstrom LE, Mann DA, Iannotti F (2000) Attenuation and augmentation of ischaemia-related neuronal death by tumour necrosis factor-α in vitro. Eur J Neurosci 12:3863–3870.

    Article  PubMed  CAS  Google Scholar 

  • Willam C, Koehne P, Jurgensen JS, Grafe M, Wagner KD, Bachmann S, Frei U, Eckardt KU (2000) Tie2 receptor expression is stimulated by hypoxia and proinflarnmatory cytokines in human endothelial cells. Circ Res 87:370–377.

    Article  PubMed  CAS  Google Scholar 

  • Wolvers DA, Marquette C, Berkenbosch F, Haour F (1993) Tumor necrosis factor-α: specific binding sites in rodent brain and pituitary gland. Eur Cytokine Netw 4:377–381.

    PubMed  CAS  Google Scholar 

  • Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574.

    Article  PubMed  CAS  Google Scholar 

  • Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. Embo J 15:4682–4690.

    PubMed  CAS  Google Scholar 

  • Yamasaki Y, Itoyama Y, Kogure K (1996) Involvement of cytokine production in pathogenesis of transient cerebral ischemic damage. Keio J Med 45:225–229.

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Lindholm K, Konishi Y, Li R, Shen Y (2002) Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 22:3025–3032.

    PubMed  CAS  Google Scholar 

  • Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M (1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol Cell Biol 17:4015–4023.

    PubMed  CAS  Google Scholar 

  • Yu Z, Zhou D, Bruce-Keller AJ, Kindy MS, Mattson MP (1999) Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 19:8856–8865.

    PubMed  CAS  Google Scholar 

  • Zaremba J, Losy J (2001) Early TNF-α levels correlate with ischaemic stroke severity. Acta Neurol Scand 104:288–295.

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZG, Chopp M, Lu D, Wayne T, Zhang RL, Morris D (1999) Receptor tyrosine kinase tie 1 mRNA is upregulated on cerebral microvessels after embolic middle cerebral artery occlusion in rat. Brain Res 847:338–342.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wei, L. et al. (2003). Restorative Potential of Angiogenesis after Ischemic Stroke. In: Maiese, K. (eds) Neuronal and Vascular Plasticity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0282-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0282-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5002-6

  • Online ISBN: 978-1-4615-0282-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics