Restorative Potential of Angiogenesis after Ischemic Stroke

  • Ling Wei
  • Kejie Yin
  • Jin-Moo Lee
  • James Y. Chao
  • Shan Ping Yu
  • Teng-Nan Lin
  • Chung Y. Hsu


In the past decade, numerous attempts have been made to rescue neurons in the ischemic brain focusing on neuroprotective strategies. So far no effective clinical therapies have been developed based on neuroprotective mechanisms. It is increasingly recognized through recent clinical trials that preventing the activation of injurious events, that often become irreversible within a few hours of ischemia onset, is a difficult, if not impossible, task in the clinical setting. It appears rational that future investigations should consider alternative or additional approaches that repair the damaged brain and promote functional restoration during chronic phases of the disease which may be more clinically feasible. This article will provide a perspective on the potential of vascular plasticity in enhancing functional recovery after ischemic stroke. Selected findings based on animal studies from our and other laboratories are reviewed to support the relevance of vascular plasticity to functional recovery.


Vascular Endothelial Growth Factor Middle Cerebral Artery Occlusion Basic Fibroblast Growth Factor Tumor Necrosis Factor Receptor Focal Cerebral Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arvin B, Neville LF, Barone FC, Feuerstein GZ (1996) The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 20:445–452.PubMedCrossRefGoogle Scholar
  2. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM (1998) Tie2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:233–240.PubMedCrossRefGoogle Scholar
  3. Baldwin RL, Stolowitz ML, Hood L, Wisnieski BJ (1996) Structural changes of tumor necrosis factor a associated with membrane insertion and channel formation. Proc Natl Acad Sci U S A 93:1021–1026.PubMedCrossRefGoogle Scholar
  4. Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP (1995) Tumor necrosis factors a and beta protect neurons against amyloid beta-peptide toxicity: evidence for involvement of a kappa B-binding factor and attenuation of peroxide and Ca2+ accumulation. Proc Natl Acad Sci U S A 92:9328–9332.PubMedCrossRefGoogle Scholar
  5. Barone FC, Arvin B, White RF, Miller A, Webb CL, Willette RN, Lysko PG, Feuerstein GZ (1997) Tumor necrosis factor-α. A mediator of focal ischemic brain injury. Stroke 28:1233–1244.PubMedCrossRefGoogle Scholar
  6. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF-α-induced cell death. Science 274:782–784.PubMedCrossRefGoogle Scholar
  7. Beutler B, Bazzoni F (1998) TNF, apoptosis and autoimmunity: a common thread? Blood Cells Mol Dis 24:216–230.PubMedCrossRefGoogle Scholar
  8. Beyaert R, Fiers W (1994) Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 340:9–16.PubMedCrossRefGoogle Scholar
  9. Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin α v beta 3 for angiogenesis. Science 264:569–571.PubMedCrossRefGoogle Scholar
  10. Bruce AJ, Boling W, Kindy MS, Peschon J, Kraemer PJ, Carpenter MK, Holtsberg FW, Mattson MP (1996) Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 2:788–794.PubMedCrossRefGoogle Scholar
  11. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868.PubMedCrossRefGoogle Scholar
  12. Buttini M, Appel K, Sauter A, Gebicke-Haerter PJ, Boddeke HW (1996) Expression of tumor necrosis factor a after focal cerebral ischaemia in the rat. Neuroscience 71:1–16.PubMedCrossRefGoogle Scholar
  13. Carlson NG, Bacchi A, Rogers SW, Gahring LC (1998) Nicotine blocks TNF-α-mediated neuroprotection to NMDA by an α-bungarotoxin-sensitive pathway. J NeuroBiol 35:29–36.PubMedCrossRefGoogle Scholar
  14. Chen HH, Chien CH, Liu HM (1994) Correlation between angiogenesis and basic fibroblast growth factor expression in experimental brain infarct. Stroke 25:1651–1657.PubMedCrossRefGoogle Scholar
  15. Chen LE, Seaber AV, Wong GH, Urbaniak JR (1996) Tumor necrosis factor promotes motor functional recovery in crushed peripheral nerve. Neurochem Int 29:197–203.PubMedCrossRefGoogle Scholar
  16. Cheng B, Christakos S, Mattson MP (1994) Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 12:139–153.PubMedCrossRefGoogle Scholar
  17. Cheung WM, Chen SF, Nian GM, Lin TN (2000) Induction of angiogenesis related genes in the contralateral cortex with a rat three-vessel occlusion model. Chin J Physiol 43:119–124.PubMedGoogle Scholar
  18. Clemens JA, Stephenson DT, Smalstig EB, Dixon EP, Little SP (1997) Global ischemia activates nuclear factor-kappa B in forebrain neurons of rats. Stroke 28:1073–1080; discussion 1080-1071.PubMedCrossRefGoogle Scholar
  19. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241.PubMedCrossRefGoogle Scholar
  20. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169.PubMedCrossRefGoogle Scholar
  21. Dawson DA, Martin D, Hallenbeck JM (1996) Inhibition of tumor necrosis factor-α reduces focal cerebral ischemic injury in the spontaneously hypertensive rat. Neurosci Lett 218:41–44.PubMedCrossRefGoogle Scholar
  22. de Moissac D, Mustapha S, Greenberg AH, Kirshenbaum LA (1998) Bcl-2 activates the transcription factor NFkappaB through the degradation of the cytoplasmic inhibitor IkappaBα. J Biol Chem 273:23946–23951.PubMedCrossRefGoogle Scholar
  23. Declercq W, Denecker G, Fiers W, Vandenabeele P (1998) Cooperation of both TNF receptors in inducing apoptosis: involvement of the TNF receptor-associated factor binding domain of the TNF receptor 75. J Immunol 161:390–399.PubMedGoogle Scholar
  24. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665.PubMedCrossRefGoogle Scholar
  25. Dumont DJ, Yamaguchi TP, Conlon RA, Rossant J, Breitman ML (1992) tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. Oncogene 7:1471–1480.PubMedGoogle Scholar
  26. Fajardo LF, Kwan HH, Kowalski J, Prionas SD, Allison AC (1992) Dual role of tumor necrosis factor-α in angiogenesis. Am J Pathol 140:539–544PubMedGoogle Scholar
  27. Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK (1996) Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Brain Res Mol Brain Res 36:287–291.PubMedCrossRefGoogle Scholar
  28. Ferrara N (2000) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35.PubMedGoogle Scholar
  29. Feuerstein G, Wang X, Barone FC (1998) Cytokines in brain ischemia—the role of TNF α. Cell Mol NeuroBiol 18:695–701.PubMedCrossRefGoogle Scholar
  30. Feuerstein GZ, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-α. Cerebrovasc Brain Metab Rev 6:341–360.PubMedGoogle Scholar
  31. Fiers W, Beyaert R, Boone E, Cornelis S, Declercq W, Decoster E, Denecker G, Depuydt B, De Valck D, De Wilde G, Goossens V, Grooten J, Haegeman G, Heyninck K, Penning L, Plaisance S, Vancompernolle K, Van Criekinge W, Vandenabeele P, Vanden Berghe W, Van de Craen M, Vandevoorde V, Vercammen D (1995) TNF-induced intracellular signaling leading to gene induction or to cytotoxicity by necrosis or by apoptosis. J Inflamm 47:67–75.PubMedGoogle Scholar
  32. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447.PubMedCrossRefGoogle Scholar
  33. Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor Necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor I and TNF receptor 2. J Neurosci 22:RC216.PubMedGoogle Scholar
  34. Fujio Y, Guo K, Mano T, Mitsuuchi Y, Testa JR, Walsh K (1999) Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol Cell Biol 19:5073–5082.PubMedGoogle Scholar
  35. Gabriel C, Justicia C, Camins A, Planas AM (1999) Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. Brain Res Mol Brain Res 65:61–69.PubMedCrossRefGoogle Scholar
  36. Gary DS, Bruce-Keller AJ, Kindy MS, Mattson MP (1998) Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab 18:1283–1287.PubMedCrossRefGoogle Scholar
  37. Gonzalez-Garcia A, Merida I, Martinez AC, Carrera AC (1997) Intermediate affinity interleukin-2 receptor mediates survival via a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 272:10220–10226.PubMedCrossRefGoogle Scholar
  38. Gordon HM, Kucera G, Salvo R, Boss JM (1992) Tumor necrosis factor induces genes involved in inflammation, cellular and tissue repair, and metabolism in murine fibroblasts. J Immunol 148:4021–4027.PubMedGoogle Scholar
  39. Grau AJ, Aulmann M, Lichy C, Meiser H, Buggle F, Brandt T, Grond-Ginsbach C (2001) Increased cytokine release by leucocytes in survivors of stroke at young age. Eur J Clin Invest 31:999–1006.PubMedCrossRefGoogle Scholar
  40. Hayashi T, Abe K, Suzuki H, Itoyama Y (1997) Rapid induction of vascular endothelial growth factor gene expression after transient middle cerebral artery occlusion in rats. Stroke 28:2039–2044.PubMedCrossRefGoogle Scholar
  41. Helisch A, Ware JA (1999) Therapeutic angiogenesis in ischemic heart disease. Thromb Haemost 82:772–780.PubMedGoogle Scholar
  42. Hoefer IE, van Royen N, Rectenwald JE, Bray EJ, Abouharnze Z, Moldawer LL, Voskuil M, Piek JJ, Buschmann IR, Ozaki CK (2002) Direct evidence for tumor necrosis factor-α signaling in arteriogenesis. Circulation 105:1639–1641.PubMedCrossRefGoogle Scholar
  43. Hopkins SJ, Rothwell NJ (1995) Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 18:83–88.PubMedCrossRefGoogle Scholar
  44. Idriss HT, Naismith IH (2000) TNF α and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50:184–195.PubMedCrossRefGoogle Scholar
  45. Kagan BL, Baldwin RL, Munoz D, Wisnieski BJ (1992) Formation of ion-permeable channels by tumor necrosis factor-α. Science 255:1427–1430.PubMedCrossRefGoogle Scholar
  46. Kawamata T, Alexis NE, Dietrich WD, Finklestein SP (1996) Intracisternal basic fibroblast growth factor (bFGF) enhances behavioral recovery following focal cerebral infarction in the rat. J Cereb Blood Flow Metab 16:542–547.PubMedCrossRefGoogle Scholar
  47. Kim GM, Xu J, Song SK, Yan P, Ku G, Xu XM, Hsu CY (2001) Tumor necrosis factor receptor deletion reduces nuclear factor-kappaB activation, cellular inhibitor of apoptosis protein 2 expression, and functional recovery after traumatic spinal cord injury. J Neurosci 21:6617–6625.PubMedGoogle Scholar
  48. Kim I, Kim JH, Ryu YS, Liu M, Koh GY (2000) Tumor necrosis factor-α upregulates angiopoietin-2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun 269:361–365.PubMedCrossRefGoogle Scholar
  49. Kinouchi K, Brown G, Pasternak G, Donner DB (1991) Identification and characterization of receptors for tumor necrosis factor-α in the brain. Biochem Biophys Res Commun 181:1532–1538.PubMedCrossRefGoogle Scholar
  50. Kolesnick R, Golde DW (1994) The sphingomyelin pathway in tumor necrosis factor and interleukin-l signaling. Cell 177:325–328.CrossRefGoogle Scholar
  51. Kops GJ, de Ruiter ND, De Vries-Smits AM, Powell DR, Bos JL, Burgering BM (1999) Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398:630–634.PubMedCrossRefGoogle Scholar
  52. Korhonen J, Polvi A, Partanen J, Alitalo K (1994) The mouse tie receptor tyrosine kinase gene: expression during embryonic angiogenesis. Oncogene 9:395–403.PubMedGoogle Scholar
  53. Krikun G, Schatz F, Finlay T, Kadner S, Mesia A, Gerrets R, Lockwood CJ (2000) Expression of angiopoietin-2 by human endometrial endothelial cells: regulation by hypoxia and inflammation. Biochem Biophys Res Commun 275:159–163.PubMedCrossRefGoogle Scholar
  54. Krupinski J, Kaluza I, Kumar P, Kumar S, Wang JM (1994) Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 25:1794–1798.PubMedCrossRefGoogle Scholar
  55. Krupinski J, Issa R, Bujny T, Slevin M, Kumar P, Kumar S, Kaluza J (1997) A putative role for platelet-derived growth factor in angiogenesis and neuroprotection after ischemic stroke in humans. Stroke 28:564–573.PubMedCrossRefGoogle Scholar
  56. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010.PubMedCrossRefGoogle Scholar
  57. La Fleur M, Underwood JL, Rappolee DA, Werb Z (1996) Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-l. J Exp Med 184:2311–2326.PubMedCrossRefGoogle Scholar
  58. Laster SM, Wood JG, Gooding LR (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol 141:2629–2634.PubMedGoogle Scholar
  59. Lavine SD, Hofman FM, Ziokovic BV (1998) Circulating antibody against tumor necrosis factor-α protects rat brain from reperfusion injury. J Cereb Blood Flow Metab 18:52–58.PubMedCrossRefGoogle Scholar
  60. Leker RR, Shohami E, Abramsky O, Ovadia H (1999) Dexanabinol; a novel neuroprotective drug in experimental focal cerebral ischemia. J Neurol Sci 162:114–119.PubMedCrossRefGoogle Scholar
  61. Lin T, Wang C, Cheung W, Hsu C (2000) Induction of angiopoietin and Tie receptor mRNA expression after cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 20:387–395.PubMedCrossRefGoogle Scholar
  62. Lin TN, Te J, Lee M, Sun GY, Hsu CY (1997) Induction of basic fibroblast growth factor (bFGF) expression following focal cerebral ischemia. Brain Res Mol Brain Res 49:255–265.PubMedCrossRefGoogle Scholar
  63. Lindner H, Holler E, Ertl B, Multhoff G, Schreglmann M, Klauke I, Schultz-Hector S, Eissner G (1997) Peripheral blood mononuclear cells induce programmed cell death in human endothelial cells and may prevent repair: role of cytokines. Blood 89:1931–1938.PubMedGoogle Scholar
  64. Liu J, Marino MW, Wong G, Grail D, Dunn A, Bettadapura J, Slavin AJ, Old L, Bernard CC (1998) TNF is a potent anti-inflammatory cytokine in autoimmune-mediated demyelination. Nat Med 4:78–83.PubMedCrossRefGoogle Scholar
  65. Liu T, Young PR, McDonnell PC, White RF, Barone FC, Feuerstein GZ (1993) Cytokine-induced neutrophil chemoattractant mRNA expressed in cerebral ischemia. Neurosci Lett 164:125–128.PubMedCrossRefGoogle Scholar
  66. Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necros is factor-α expression in ischemic neurons. Stroke 25:1481–1488.PubMedCrossRefGoogle Scholar
  67. Liu XH, Xu H, Barks JD (1999) Tumor necrosis factor-α attenuates N-methyl-D-aspartatemediated neurotoxicity in neonatal rat hippocampus. Brain Res 851:94–104.PubMedCrossRefGoogle Scholar
  68. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501.PubMedCrossRefGoogle Scholar
  69. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61:351–359.PubMedCrossRefGoogle Scholar
  70. Lyons MK, Anderson RE, Meyer FB (1991) Basic fibroblast growth factor promotes in vivo cerebral angiogenesis in chronic forebrain ischemia. Brain Res 558:315–320.PubMedCrossRefGoogle Scholar
  71. Maiese K, Boniece I, DeMeo D, Wagner JA (1993) Peptide growth factors protect against ischemia in culture by preventing nitric oxide toxicity. J Neurosci 13:3034–3040.PubMedGoogle Scholar
  72. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60.PubMedCrossRefGoogle Scholar
  73. Mandriota SJ, Pepper MS (1998) Regulation of angiopoietin-2 mRNA levels in bovine microvascular endothelial cells by cytokines and hypoxia. Circ Res 83:852–859.PubMedCrossRefGoogle Scholar
  74. Matsuoka Y, Kitamura Y, Okazaki M, Terai K, Taniguchi T (1999) Kainic acid-induced activation of nuclear factor-kappaB in rat hippocampus. Exp Brain Res 124:215–222.PubMedCrossRefGoogle Scholar
  75. Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697.PubMedCrossRefGoogle Scholar
  76. Mattson MP, Cheng B, Baldwin SA, Smith-Swintosky VL, Keller J, Geddes JW, Scheff SW, Christakos S (1995) Brain injury and tumor necrosis factors induce calbindin D-28k in astrocytes: evidence for a cytoprotective response. J Neurosci Res 42:357–370.PubMedCrossRefGoogle Scholar
  77. Montrucchio G, Lupia E, Battaglia E, Passerini G, Bussolino F, Emanuelli G, Camussi G (1994) Tumor necrosis factor α-induced angiogenesis depends on in situ platelet-activating factor biosynthesis. J Exp Med 180:377–382.PubMedCrossRefGoogle Scholar
  78. Mustonen T, Alitalo K (1995) Endothelial receptor tyrosine kinases involved in angiogenesis. J Cell Biol 129:895–898.PubMedCrossRefGoogle Scholar
  79. Nawashiro H, Martin D, Hallenbeck JM (1997a) Neuroprotective effects of TNF binding protein in focal cerebral ischemia. Brain Res 778:265–271.PubMedCrossRefGoogle Scholar
  80. Nawashiro H, Tasaki K, Ruetzler CA, Hallenbeck JM (1997b) TNF-α pretreatment induces protective effects against focal cerebral ischemia in mice. J Cereb Blood Flow Metab 17:483–490.PubMedCrossRefGoogle Scholar
  81. Norrby K (1996) TNF-a and de novo mammalian angiogenesis. Microvasc Res 52:79–83.PubMedCrossRefGoogle Scholar
  82. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85.PubMedCrossRefGoogle Scholar
  83. Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320.PubMedCrossRefGoogle Scholar
  84. Price RJ, Skalak TC (1995) A circumferential stress-growth rule predicts arcade arteriole formation in a network model. Microcirculation 2:41–51.PubMedCrossRefGoogle Scholar
  85. Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90.PubMedCrossRefGoogle Scholar
  86. Rong Y, Baudry M (1996) Seizure activity results in a rapid induction of nuclear factor-kappa B in adult but not juvenile rat limbic structures. J Neurochem 67:662–668.PubMedCrossRefGoogle Scholar
  87. Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ (1994) The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 8:419–425.PubMedCrossRefGoogle Scholar
  88. Rothwell NJ, Hopkins SJ (1995) Cytokines and the nervous system II: Actions and mechanisms of action. Trends Neurosci 18:130–136.PubMedCrossRefGoogle Scholar
  89. Rothwell NJ, Strijbos PJ (1995) Cytokines in neurodegeneration and repair. Int J Dev Neurosci 13:179–185.PubMedCrossRefGoogle Scholar
  90. Sairanen T, Carpen O, Karjalainen-Lindsberg ML, Paetau A, Turpeinen D, Kaste M, Lindsberg PJ (2001) Evolution of cerebral tumor necrosis factor-a production during human ischemic stroke. Stroke 32:1750–1758.PubMedCrossRefGoogle Scholar
  91. Salminen A, Liu PK, Hsu CY (1995) Alteration of transcription factor binding activities in the ischemic rat brain. Biochem Biophys Res Commun 212:939–944.PubMedCrossRefGoogle Scholar
  92. Sato TN, Tozawa Y, Deutsch D, Wolburg-Buchholz K, Fujiwara Y, Gendron-Maguire M, Gridley T, Wolburg H, Risau W, Qin Y (1995) Distinct roles of the receptor tyrosine kinases Tie-l and Tie-2 in blood vessel formation. Nature 376:70–74.PubMedCrossRefGoogle Scholar
  93. Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E, Marino MW, McIntosh TK (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A 96:8721–8726.PubMedCrossRefGoogle Scholar
  94. Shen Y, Li R, Shiosaki K (1997) Inhibition of p75 tumor necrosis factor receptor by antisense oligonucleotides increases hypoxic injury and beta-amyloid toxicity in human neuronal cell line. J Biol Chem 272:3550–3553.PubMedCrossRefGoogle Scholar
  95. Shiojima I, Walsh K (2002) Role of Akt signaling in vascular homeostasis and angiogenesis. Circ Res 90:1243–1250.PubMedCrossRefGoogle Scholar
  96. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor a in brain injury. Cytokine Growth Factor Rev 10:119–130.PubMedCrossRefGoogle Scholar
  97. Shohami E, Gallily R, Mechoulam R, Bass R, Ben-Hur T (1997) Cytokine production in the brain following closed head injury: dexanabino1 (HD-211) is a novel TNF-α inhibitor and an effective neuroprotectant. J Neuroimmunol 72:169–177.PubMedCrossRefGoogle Scholar
  98. Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.PubMedCrossRefGoogle Scholar
  99. Smith CA, Davis T, Anderson D, Solam L, Beckmann MP, Jerzy R, Dower SK, Cosman D, Goodwin RG (1990) A receptor for tumor necrosis factor defines an unusual family of cellular and viral proteins. Science 248:1019–1023.PubMedCrossRefGoogle Scholar
  100. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, Christakos S, Clair DK, Mattson MP, Scheff SW (1999) Exacerbation of damage and altered NF-kappaB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 19:6248–6256.PubMedGoogle Scholar
  101. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S, Sato TN, Yancopoulos GD (1996) Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–1180.PubMedCrossRefGoogle Scholar
  102. Taglialatela G, Robinson R, Perez-Polo JR (1997) Inhibition of nuclear factor kappa B (NFkappaB) activity induces nerve growth factor-resistant apoptosis in PC12 cells. J Neurosci Res 47:155–162.PubMedCrossRefGoogle Scholar
  103. Tamatani M, Che YR, Matsuzaki H, Ogawa S, Okado H, Miyake S, Mizuno T, Tohyama M (1999) Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J Biol Chem 274:8531–8538.PubMedCrossRefGoogle Scholar
  104. Tanaka R, Miyasaka Y, Yada K, Ohwada T, Kameya T (1995) Basic fibroblast growth factor increases regional cerebral blood flow and reduces infarct size after experimental ischemia in a rat model. Stroke 26:2154–2158; discussion 2158-2159.PubMedCrossRefGoogle Scholar
  105. Tang ED, Nunez G, Barr FG, Guan KL (1999) Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274:16741–16746.PubMedCrossRefGoogle Scholar
  106. Tartaglia LA, Pennica D, Goeddel DV (1993) Ligand passing: the 75-kDa tumor necrosis factor (TNF) receptor recruits TNF for signaling by the 55-kDa TNF receptor. J Biol Chem 268:18542–18548.PubMedGoogle Scholar
  107. Terrado J, Monnier D, Perrelet D, Vesin D, Jemelin S, Buurman WA, Mattenberger L, King B, Kato AC, Garcia I (2000) Soluble TNF receptors partially protect injured motoneurons in the postnatal CNS. Eur J Neurosci 12:3443–3447.PubMedCrossRefGoogle Scholar
  108. Vandenabeele P, Declercq W, Vanhaesebroeck B, Grooten J, Fiers W (1995) Both TNF receptors are required for TNF-mediated induction of apoptosis in PC60 cells. J Immunol 154:2904–2913.PubMedGoogle Scholar
  109. Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919–930.PubMedCrossRefGoogle Scholar
  110. Wei L, Bolye MP, Yu SP (2001b) Roles of VEGF in angiogenesis and fuctional recovery after a focal cerebral ischemia in mice. J Cereb Bld Flow Metab 21:315.Google Scholar
  111. Wei L, Brunstrom J, Rovainen C, Woolsey T (1997) Mirovascular proliferation and remodeling after focal ischemia in rat barrel cortex. Abstr Soc for Neurosci 23:1730.Google Scholar
  112. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA (2001a) Collateral growth and angiogenesis around cortical stroke. Stroke 32:2179–2184.PubMedCrossRefGoogle Scholar
  113. Wilde GJ, Pringle AK, Sundstrom LE, Mann DA, Iannotti F (2000) Attenuation and augmentation of ischaemia-related neuronal death by tumour necrosis factor-α in vitro. Eur J Neurosci 12:3863–3870.PubMedCrossRefGoogle Scholar
  114. Willam C, Koehne P, Jurgensen JS, Grafe M, Wagner KD, Bachmann S, Frei U, Eckardt KU (2000) Tie2 receptor expression is stimulated by hypoxia and proinflarnmatory cytokines in human endothelial cells. Circ Res 87:370–377.PubMedCrossRefGoogle Scholar
  115. Wolvers DA, Marquette C, Berkenbosch F, Haour F (1993) Tumor necrosis factor-α: specific binding sites in rodent brain and pituitary gland. Eur Cytokine Netw 4:377–381.PubMedGoogle Scholar
  116. Wong AL, Haroon ZA, Werner S, Dewhirst MW, Greenberg CS, Peters KG (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574.PubMedCrossRefGoogle Scholar
  117. Wu M, Lee H, Bellas RE, Schauer SL, Arsura M, Katz D, FitzGerald MJ, Rothstein TL, Sherr DH, Sonenshein GE (1996) Inhibition of NF-kappaB/Rel induces apoptosis of murine B cells. Embo J 15:4682–4690.PubMedGoogle Scholar
  118. Yamasaki Y, Itoyama Y, Kogure K (1996) Involvement of cytokine production in pathogenesis of transient cerebral ischemic damage. Keio J Med 45:225–229.PubMedCrossRefGoogle Scholar
  119. Yang L, Lindholm K, Konishi Y, Li R, Shen Y (2002) Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci 22:3025–3032.PubMedGoogle Scholar
  120. Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M (1997) Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol Cell Biol 17:4015–4023.PubMedGoogle Scholar
  121. Yu Z, Zhou D, Bruce-Keller AJ, Kindy MS, Mattson MP (1999) Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 19:8856–8865.PubMedGoogle Scholar
  122. Zaremba J, Losy J (2001) Early TNF-α levels correlate with ischaemic stroke severity. Acta Neurol Scand 104:288–295.PubMedCrossRefGoogle Scholar
  123. Zhang ZG, Chopp M, Lu D, Wayne T, Zhang RL, Morris D (1999) Receptor tyrosine kinase tie 1 mRNA is upregulated on cerebral microvessels after embolic middle cerebral artery occlusion in rat. Brain Res 847:338–342.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Ling Wei
    • 1
  • Kejie Yin
    • 1
  • Jin-Moo Lee
    • 1
  • James Y. Chao
    • 1
  • Shan Ping Yu
    • 1
  • Teng-Nan Lin
    • 2
  • Chung Y. Hsu
    • 1
    • 2
  1. 1.Department of NeurologyWashington University School of MedicineSt. LouisUSA
  2. 2.Academia Sinica and Taipei Medical UniversityTaipeiTaiwan

Personalised recommendations