Transport of Spermatozoa in the Female Genital Tract

  • Susan S. Suarez

Abstract

Millions of spermatozoa are inseminated into the mammalian female genital tract in order to fertilize only one or a few oocytes. The movement of spermatozoa through the female genital tract is actually regulated by the female so that a few reach the oocyte in the oviduct (fallopian tube) and only one of them succeeds in fertilizing it. This is accomplished by placing filters and traps in the path of the spermatozoa and by switching the way in which the tails of the spermatozoa beat. In this chapter, the way in which movement of spermatozoa into and through each female reproductive organ is regulated will be discussed.

Keywords

Sugar Carbohydrate Estrogen Heparin Oligomer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Croxatto H.B. Gamete Transport. In Reproductive Endocrinology, Surgery, and Technology, E.Y. Adashi, J.A. Rock, Z. Rosenwaks, eds. Philadelphia: Lippincott-Raven Publishers, 1996, 385–402Google Scholar
  2. 2.
    Hawk H.W. Transport and fate of spermatozoa after insemination in cattle. J Dairy Sci 1987;70:1487–1503PubMedCrossRefGoogle Scholar
  3. 3.
    Phillips D. M., Mahler S. Phagocytosis of spermatozoa by the rabbit vagina. Anat Rec 1977;189:61–72PubMedCrossRefGoogle Scholar
  4. 4.
    Bedford J. M., Yanagimachi R. Initiation of sperm motility after mating in the rat. J. Androl l992; 13:444–449Google Scholar
  5. 5.
    Roberts S.J. Infertility in male animals (andrology). In Veterinary Obstetrics and Genital Diseases (Theriogenology), S.J. Roberts, ed. North Pomfret Vt: David and Charles, Inc. 1986Google Scholar
  6. 6.
    Mullins K.J., Saacke R.G. Study of the functional anatomy of bovine cervical mucosa with special reference to mucus secretion and sperm transport. Anat Rec 1989; 226:106–117CrossRefGoogle Scholar
  7. 7.
    Hawk H. W. Transport and fate of spermatozoa after insemination of cattle. J. Dairy Sci 1983; 70,: 1487–1503CrossRefGoogle Scholar
  8. 8.
    Kunz G., Beil D., Deininger H., Wildt, L.., Leyendecker, G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Human Reprod 1996; 11: 627–632CrossRefGoogle Scholar
  9. 9.
    Harper M. J. K. Gamete and zygote transport. In The Physiology of Reproduction, E. Knobil, J. D. Neill, eds. New York: Raven Press, Ltd, 1994,123–187.Google Scholar
  10. 10.
    Wrobel, K.-H., Kujat, R., and Fehle, G., The bovine tubouterine junction: general organization and surface morphology. Cell. Tissue Res 1993; 271: 227–239PubMedCrossRefGoogle Scholar
  11. 11.
    Suarez S.S. Sperm transport and motility in the mouse oviduct: observations in situ. Biol Reprod 1987; 36:203–210PubMedCrossRefGoogle Scholar
  12. 12.
    Jansen, R. P. S., Fallopian tube isthmic mucus and ovum transport. Science 1978; 201:349–351PubMedCrossRefGoogle Scholar
  13. 13.
    Suarez S. S., Brockman K., Lefebvre R. Distribution of mucus and sperm in bovine oviducts after artificial insemination. Biol. Reprod 1997; 56:447–453PubMedCrossRefGoogle Scholar
  14. 14.
    Overstreet J. W., Cooper G. W. Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol. Reprod 1978; 19:101–114PubMedCrossRefGoogle Scholar
  15. 15.
    Yaniz J.L., Lopez-Gatius F., Santolaria P., Mullins K.J. Study of the functional anatomy of bovine oviductal mucosa. Anat Rec 2000; 260: 268–278PubMedCrossRefGoogle Scholar
  16. 16.
    Lefebvre R., Chenoweth P.J., Drost M., LeClear C.T., MacCubbin M., Dutton J.T., Suarez S.S., Characterization of the oviductal sperm reservoir in cattle. Biol Reprod 1995;53:1066–1074PubMedCrossRefGoogle Scholar
  17. 17.
    Baillie H.S., Pacey A.A., Warren M.A., Scudamore I.W., Barratt C.L.R. Greater numbers of human spermatozoa associate with endosalpingeal cells derived from the isthmus compared with those from the ampulla. Human Reprod 1997; 12:1985–1992CrossRefGoogle Scholar
  18. 18.
    Smith T.T., Yanagimachi R. Attachment and release of spermatozoa from the caudal isthmus of the hamster oviduct. J Reprod Fertil 1991; 91:567–573PubMedCrossRefGoogle Scholar
  19. 19.
    Suarez S.S., Redfern K., Raynor P., Martin F., Phillips D.M. Attachment of boar sperm to mucosal explants of oviduct in vitro: possible role in formation of a sperm reservoir. Biol Reprod 1991; 44:998–1004PubMedCrossRefGoogle Scholar
  20. 20.
    Thomas P.G.A., Ball B.A., Brinsko S.P. Interaction of equine spermatozoa with oviduct epithelial cell explants is affected by estrous cycle and anatomic origin of explant. Biol Reprod 1994; 51:222–228PubMedCrossRefGoogle Scholar
  21. 21.
    FIŽchon J.-E., Hunter R.H.F. Distribution of spermatozoa in the utero-tubal junction and isthmus of pigs, and their relationship with the luminal epithelium after mating: a scanning electron microscope study. Tissue & Cell 1981; 13:127–139CrossRefGoogle Scholar
  22. 22.
    Hunter R.H.F., FIZchon B., FIZchon J.E. Distribution, morphology and epithelial interactions of bovine spermatozoa in the oviduct before and after ovulation: a scanning electron microscopy study. Tissue and Cell 1991; 23:641–656PubMedCrossRefGoogle Scholar
  23. 23.
    DeMott R.P., Lefebvre R., Suarez S.S. Carbohydrates mediate the adherence of hamster sperm to oviductal epithelium. Biol Reprod 1995; 52:1395–1403PubMedCrossRefGoogle Scholar
  24. 24.
    Lefebvre R., DeMott R.P., Suarez S.S., Samper J.C. Specific inhibition of equine sperm binding to oviductal epithelium. Equine Reproduction VI, Biol Reprod Mono 1995; 1: 689–696Google Scholar
  25. 25.
    Lefebvre R., Lo M.C., Suarez S.S. Bovine sperm binding to oviductal epithelium involves fucose recognition. Biol Reprod 1997; 56:1198–1204PubMedCrossRefGoogle Scholar
  26. 26.
    Suarez S.S., Revah I., Lo M., Koelle S. Bull sperm binding to oviductal epithelium is mediated by a Ca2+-dependent lectin on sperm that recognizes Lewis-a trisaccharide. Biol Reprod 1998; 59:39–44PubMedCrossRefGoogle Scholar
  27. 27.
    Revah I., Gadella B.M., Flesch F.M., Colenbrander B., Suarez S.S. The physiological state of bull sperm affects fucose and mannose binding properties. Biol Reprod 2000; 62:1010–1015PubMedCrossRefGoogle Scholar
  28. 28.
    Kogan T.P., Revelle B.M., Tapp S., Scott D., Beck P.J. A single amino acid residue can determine the ligand specificity of E-selectin. J Biol Chem 1995; 270:14047–14055PubMedCrossRefGoogle Scholar
  29. 29.
    Raychoudhury S.S., Millette C.F. Multiple fucosyltransferases and their carbohydrate ligands are involved in spermatogenic cell-Sertoli cell adhesion in vitro in rats. Biol Reprod 1997; 56:1268–1273PubMedCrossRefGoogle Scholar
  30. 30.
    Tulsiani D.R., Yoshida-Komiya H., Araki Y. Mammalian fertilization: a carbohydrate-mediated event. Biol Reprod 1997; 57:487–94PubMedCrossRefGoogle Scholar
  31. 31.
    Manjunath P., Chandonnet L., LeBlond E., Desnoyers L. Major proteins of bovine seminal vesicles bind to spermatozoa. Biol Reprod 1993; 49:27–37Google Scholar
  32. 32.
    Gasset M., Saiz J., Laynez J., Sanz L., Gentzel M., Toepfer-Petersen E., Calvete J.J. Conformational features and thermal stability of bovine seminal plasma protein PDC-109 oligomers and phosphorylcholin-bound complexes. Eur J Biochem 1997; 250:735–744PubMedCrossRefGoogle Scholar
  33. 33.
    Ignotz G.G., Lo M., Perez C., Gwathmey T.M., Suarez S.S. Characterization of a fucose-binding protein from bull sperm and seminal plasma responsible for formation of the oviductal sperm reservoir. Biol Reprod 2001; 64:1806–1811PubMedCrossRefGoogle Scholar
  34. 34.
    DeMott R.P., Suarez S.S. Hyperactivated sperm progress in the mouse oviduct. Biol Reprod 1992; 46:779–-785PubMedCrossRefGoogle Scholar
  35. 35.
    Pacey A.A., Hill C.J., Scudamore I.W., Warren M.A., Barratt C.L.R., Cooke I.D. The interaction in vitro of human spermatozoa with epithelial cells from the human uterine (Fallopian) tube. Human Reprod 1995; 10:360–366Google Scholar
  36. 36.
    Lefebvre R., Suarez S.S. Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol Reprod 1996; 54:575–582PubMedCrossRefGoogle Scholar
  37. 37.
    Katsumata T., Noguchi S., Yonezawa N., Tanokura M., Nakano M. Structural characterization of the N-linked carbohydrate chains of the zona pellucida glycoproteins from bovine ovarian and fertilized eggs. Eur J Biochem 1996; 240:448–453PubMedCrossRefGoogle Scholar
  38. 38.
    Chian R.I.-C., LaPointe S., Sirard M.A. Capacitation in vitro of bovine spermatozoa by oviduct cell monolayer conditioned medium. Molec Reprod Dev 1995; 42:318–324PubMedCrossRefGoogle Scholar
  39. 39.
    Mahmoud A.I., Parrish J.J. Oviduct fluid and heparin induce similar surface changes in bovine sperm during capacitation. Molec Reprod Devel 1996; 43:554–560CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Susan S. Suarez
    • 1
  1. 1.Cornell UniversityIthacaUSA

Personalised recommendations