Skip to main content

Central Venous Catheter Related Infections: The Role of Antimicrobial Catheters

  • Chapter
Immunology and Infectious Disease

Part of the book series: Molecular and Cellular Biology of Critical Care Medicine ((MCCM,volume 3))

Abstract

Intravascular devices are indispensable in modern-day medical practice, especially in the care of critically and chronically ill patients, such as patients in intensive care units (ICU), cancer patients, patients with renal failure requiring chronic hemodialysis, or patients requiring organ or bone marrow transplantation. Additionally surgical patients especially the ones with short bowel syndrome, totally depend on intravenous catheters for their nutritional support. These devices are used to administer intravenous fluids, medications, blood products and total parenteral nutrition (TPN) fluids, as well as for hemodynamic status monitoring of critically ill patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raad I, Costerton W, Sabharwal U, Sacilowski M, Anaissie E, Bodey GP. Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J Infect Dis 1993; 168:400–7.

    Article  PubMed  CAS  Google Scholar 

  2. Maki DG. Reactions associated with midline catheters for intravenous access. Ann Intern Med 1995; 123:884–6.

    PubMed  CAS  Google Scholar 

  3. Mermel LA, Stolz SM, Maki DG. Surface antimicrobial activity of heparin-bonded and antiseptic- impregnated vascular catheters. J Infect Dis 1993; 167:920–4.

    Article  PubMed  CAS  Google Scholar 

  4. Raad I, Darouiche R, Dupuis J, et al. Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections. A randomized, double-blind trial. The Texas Medical Center Catheter Study Group [see comments]. Ann Intern Med 1997; 127:267–74.

    PubMed  CAS  Google Scholar 

  5. Broviac JW, Cole JJ, Scribner BH. A silicone rubber atrial catheter for prolonged parenteral alimentation. Surg Gynecol Obstet 1973; 136:602–6.

    PubMed  CAS  Google Scholar 

  6. Hickman RO, Buckner CD, Clift RA, Sanders JE, Stewart P, Thomas ED. A modified right atrial catheter for access to the venous system in marrow transplant recipients. Surg Gynecol Obstet 1979; 148:871–5.

    PubMed  CAS  Google Scholar 

  7. Raad I, Davis S, Becker M, et al. Low infection rate and long durability of nontunneled silastic catheters. A safe and cost-effective alternative for long-term venous access. Arch Intern Med 1993; 153:1791–6.

    Article  PubMed  CAS  Google Scholar 

  8. Goodman MS, Wickham R. Venous access devices: an overview. Oncol Nurs Forum 1984; 11:16–23.

    PubMed  CAS  Google Scholar 

  9. Tager IB, Ginsberg MB, Ellis SE, et al. An epidemiologic study of the risks associated with peripheral intravenous catheters. Am J Epidemiol 1983; 118:839–51.

    PubMed  CAS  Google Scholar 

  10. Gardner RM, Schwartz R, Wong HC, Burke JP. Percutaneous indwelling radial-artery catheters for monitoring cardiovascular function. Prospective study of the risk of thrombosis and infection. N Engl J Med 1974; 290:1227–31.

    Article  PubMed  CAS  Google Scholar 

  11. Maki DG, Mermel LA. Infections due to infusion therapy. In: Bennett JV, Brachman PS, eds. Hospital infections. Philadelphia: Lippincott- Raven, 1998:689–724.

    Google Scholar 

  12. Samsoondar W, Freeman JB, Coultish I, Oxley C. Colonization of intravascular catheters in the intensive care unit. Am J Surg 1985; 149:730–2.

    Article  PubMed  CAS  Google Scholar 

  13. Thomas F, Burke JP, Parker J, et al. The risk of infection related to radial vs femoral sites for arterial catheterization. Crit Care Med 1983; 11:807–12.

    Article  PubMed  CAS  Google Scholar 

  14. Maki DG, McCormick RD, Uman SJ, Wirtanen GW. Septic endarteritis due to intraarterial catheters for cancer chemotherapy. I. Evaluation of an outbreak. II. Risk factors, clinical features and management, III. Guidelines for prevention. Cancer 1979; 44: 1228–40.

    Article  PubMed  CAS  Google Scholar 

  15. Harwood IR, Greene LM, Kozakowski-Koch JA, Rasor JS. New peripherally inserted midline catheter: a better alternative for intravenous antibiotic therapy in patients with cystic fibrosis. Pediatr Pulmonol 1992; 12:233–9.

    Article  PubMed  CAS  Google Scholar 

  16. Mermel LA, Parenteau S, Tow SM. The risk of midline catheterization in hospitalized patients. A prospective study. Ann Intern Med 1995; 123:841–4.

    PubMed  CAS  Google Scholar 

  17. Mermel LA, McCormick RD, Springman SR, Maki DG. The pathogenesis and epidemiology of catheter-related infection with pulmonary artery Swan-Ganz catheters: a prospective study utilizing molecular subtyping. Am J Med 1991; 91:197S-205S.

    Article  Google Scholar 

  18. Rello J, Coll P, Net A, Prats G. Infection of pulmonary artery catheters. Epidemiologic characteristics and multivariate analysis of risk factors. Chest 1993; 103:132–6.

    Article  PubMed  CAS  Google Scholar 

  19. Raad I, Umphrey J, Khan A, Truett LJ, Bodey GP. The duration of placement as a predictor of peripheral and pulmonary arterial catheter infections. J Hosp Infect 1993; 23:17–26.

    Article  PubMed  CAS  Google Scholar 

  20. Pinilla JC, Ross DF, Martin T, Crump H. Study of the incidence of intravascular catheter infection and associated septicemia in critically ill patients. Crit Care Med 1983; 11:21–5.

    Article  PubMed  CAS  Google Scholar 

  21. Senagore A, Waller JD, Bonnell BW, Bursch LR, Scholten DJ. Pulmonary artery catheterization: a prospective study of internal jugular and subclavian approaches. Crit Care Med 1987; 15:35–7.

    Article  PubMed  CAS  Google Scholar 

  22. Jarvis WR, Edwards JR, Culver DH, et al. Nosocomial infection rates in adult and pediatric intensive care units in the United States. National Nosocomial Infections Surveillance System. American Journal of Medicine 1991; 91:185S-191S.

    Article  Google Scholar 

  23. Mayhall CG. Diagnosis and management of infections of implantable devices used for prolonged venous access. Curr Clin Top Infect Dis 1992; 12:83–110.

    PubMed  CAS  Google Scholar 

  24. Decker MD, Edwards KM. Central venous catheter infections. Pediatr Clin North Am 1988; 35:579–612.

    PubMed  CAS  Google Scholar 

  25. Press OW, Ramsey PG, Larson EB, Fefer A, Hickman RO. Hickman catheter infections in patients with malignancies. Medicine (Baltimore) 1984; 63:189–200.

    CAS  Google Scholar 

  26. Clarke DE, Raffin TA. Infectious complications of indwelling long-term central venous catheters. Chest 1990; 97:966–72.

    Article  PubMed  CAS  Google Scholar 

  27. Howell PB, Walters PE, Donowitz GR, Farr BM. Risk factors for infection of adult patients with cancer who have tunnelled central venous catheters. Cancer 1995; 75:1367–75.

    Article  PubMed  CAS  Google Scholar 

  28. Schuman ES, Winters V, Gross GF, Hayes JF. Management of Hickman catheter sepsis. Am J Surg 1985; 149:627–8.

    Article  PubMed  CAS  Google Scholar 

  29. Weightman NC, Simpson EM, Speller DC, Mott MG, Oakhill A. Bacteraemia related to indwelling central venous catheters: prevention, diagnosis and treatment. Eur J Clin Microbiol Infect Dis 1988; 7:125–9.

    Article  PubMed  CAS  Google Scholar 

  30. Shapiro ED, Wald ER, Nelson KA, Spiegelman KN. Broviac catheter-related bacteremia in oncology patients. Am J Dis Child 1982; 136:679–81.

    PubMed  CAS  Google Scholar 

  31. Shulman RJ, Smith EO, Rahman S, Gardner P, Reed T, Mahoney D. Single- vs double-lumen central venous catheters in pediatric oncology patients. Am J Dis Child 1988; 142:893–5.

    PubMed  CAS  Google Scholar 

  32. Darbyshire PJ, Weightman NC, Speller DC. Problems associated with indwelling central venous catheters. Arch Dis Child 1985; 60:129–34.

    Article  PubMed  CAS  Google Scholar 

  33. Rannem T, Ladefoged K, Tvede M, Lorentzen JE, Jarnum S. Catheter-related septicaemia in patients receiving home parenteral nutrition. Scand J Gastroenterol 1986; 21:455–60.

    Article  PubMed  CAS  Google Scholar 

  34. Pessa ME, Howard RJ. Complications of Hickman-Broviac catheters. Surg Gynecol Obstet l985; 161:257–60.

    Google Scholar 

  35. Abrahm JL, Mullen JL. A prospective study of prolonged central venous access in leukemia. JAMA 1982; 248:2868–73.

    Article  PubMed  CAS  Google Scholar 

  36. Andrivet P, Bacquer A, Ngoc CV, et al. Lack of clinical benefit from subcutaneous tunnel insertion of central venous catheters in immunocompromised patients. Clin Infect Dis 1994; 18:199–206.

    Article  PubMed  CAS  Google Scholar 

  37. Raad I, Hanna H, McFadyen S, Marts K, Richardson D, Mansfield P. Nontunneled subclavian central venous catheters (NTSC) vs. tunneled central venous catheters (CVCs) and ports in cancer patients, 41st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Chicago, IL, USA, 2001.

    Google Scholar 

  38. Hanna H, McFadyen S, Marts K, Richardson D, Hachem R, Raad I. Prospective evaluation of 1.67 million catheter - days of peripherally inserted central catheters (PICCs) in cancer patients: Long durability and low infection rate, 41st Annual Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Chicago, IL, USA, 2001.

    Google Scholar 

  39. Groeger JS, Lucas AB, Thaler HT, et al. Infectious morbidity associated with long-term use of venous access devices in patients with cancer. Ann Intern Med 1993; 119:1168–74.

    PubMed  CAS  Google Scholar 

  40. van der Pijl H, Frissen PH. Experience with a totally implantable venous access device (Port-A- Cath) in patients with AIDS. Aids 1992; 6:709–13.

    Article  PubMed  CAS  Google Scholar 

  41. Khoury MD, Lloyd LR, Burrows J, Berg R, Yap J. A totally implanted venous access system for the delivery of chemotherapy. Cancer 1985; 56:1231–4.

    Article  PubMed  CAS  Google Scholar 

  42. Carde P, Cosset-Delaigue MF, Laplanche A, Chareau I. Classical external indwelling central venous catheter versus totally implanted venous access systems for chemotherapy administration: a randomized trial in 100 patients with solid tumors. Eur J Cancer Clin Oncol 1989; 25:939–44.

    Article  PubMed  CAS  Google Scholar 

  43. Kappers-Klunne MC, Degener JE, Stijnen T, Abels J. Complications from long-term indwelling central venous catheters in hematologic patients with special reference to infection. Cancer 1989; 64:1747–52.

    Article  PubMed  CAS  Google Scholar 

  44. Lokich JJ, Bothe A, Jr., Benotti P, Moore C. Complications and management of implanted venous access catheters. J Clin Oncol 1985; 3:710–7.

    PubMed  CAS  Google Scholar 

  45. Gyves JW, Ensminger WD, Niederhuber JE, et al. A totally implanted injection port system for blood sampling and chemotherapy administration. JAMA 1984; 251:2538–41.

    Article  PubMed  CAS  Google Scholar 

  46. Wurzel CL, Halom K, Feldman JG, Rubin LG. Infection rates of Broviac-Hickman catheters and implantable venous devices. Am J Dis Child 1988; 142:536–40.

    PubMed  CAS  Google Scholar 

  47. Pegues D, Axelrod P, McClarren C, et al. Comparison of infections in Hickman and implanted port catheters in adult solid tumor patients. J Surg Oncol 1992; 49:156–62.

    Article  PubMed  CAS  Google Scholar 

  48. Brincker H, Saeter G. Fifty-five patient years’ experience with a totally implanted system for intravenous chemotherapy. Cancer 1986; 57:1124–9.

    Article  PubMed  CAS  Google Scholar 

  49. McDowell HP, Hart CA, Martin J. Implantable subcutaneous venous catheters. Arch Dis Child 1986; 61:1037–8.

    Article  PubMed  CAS  Google Scholar 

  50. Hilton E, Haslett TM, Borenstein MT, Tucci V, Isenberg HD, Singer C. Central catheter infections: single- versus triple-lumen catheters. Influence of guide wires on infection rates when used for replacement of catheters. Am J Med 1988; 84:667–72.

    Article  PubMed  CAS  Google Scholar 

  51. Yeung C, May J, Hughes R. Infection rate for single lumen v triple lumen subclavian catheters. Infect Control Hosp Epidemiol 1988; 9:154–8.

    Article  PubMed  CAS  Google Scholar 

  52. Pemberton LB, Lyman B, Lander V, Covinsky J. Sepsis from triple- vs single-lumen catheters during total parenteral nutrition in surgical or critically ill patients. Arch Surg 1986; 121:591–4.

    Article  PubMed  CAS  Google Scholar 

  53. Clark-Christoff N, Watters VA, Sparks W, Snyder P, Grant JP. Use of triple-lumen subclavian catheters for administration of total parenteral nutrition. JPEN J Parenter Enteral Nutr 1992; 16:403–7.

    Article  PubMed  CAS  Google Scholar 

  54. McCarthy MC, Shives JK, Robison RJ, Broadie TA. Prospective evaluation of single and triple lumen catheters in total parenteral nutrition. JPEN J Parenter Enteral Nutr 1987; 11:259–62.

    Article  PubMed  CAS  Google Scholar 

  55. Lee RB, Buckner M, Sharp KW. Do multi-lumen catheters increase central venous catheter sepsis compared to single-lumen catheters? J Trauma 1988; 28:1472–5.

    Article  PubMed  CAS  Google Scholar 

  56. Farkas JC, Liu N, Bleriot JP, Chevret S, Goldstein FW, Carlet J. Single- versus triple-lumen central catheter-related sepsis: a prospective randomized study in a critically ill population. Am J Med 1992; 93:277–82.

    Article  PubMed  CAS  Google Scholar 

  57. Snydman DR, Gorbea HF, Pober BR, Majka JA, Murray SA, Perry LK. Predictive value of surveillance skin cultures in total-parenteral-nutrition-related infection. Lancet 1982; 2:1385–8.

    Article  PubMed  CAS  Google Scholar 

  58. Richet H, Hubert B, Nitemberg G, et al. Prospective multicenter study of vascular-catheter-related complications and risk factors for positive central-catheter cultures in intensive care unit patients. J Clin Microbiol 1990; 28:2520–5.

    PubMed  CAS  Google Scholar 

  59. Collignon PJ, Soni N, Pearson IY, Woods WP, Munro R, Sorrell TC. Is semiquantitative culture of central vein catheter tips useful in the diagnosis of catheter-associated bacteremia? J Clin Microbiol 1986; 24:532–5.

    PubMed  CAS  Google Scholar 

  60. Brun-Buisson C, Abrouk F, Legrand P, Huet Y, Larabi S, Rapin M. Diagnosis of central venous catheter-related sepsis. Critical level of quantitative tip cultures. Arch Intern Med 1987; 147:873–7.

    Article  PubMed  CAS  Google Scholar 

  61. Prager RL, Silva J, Jr. Colonization of central venous catheters. South Med J 1984; 77:458–61.

    Article  PubMed  CAS  Google Scholar 

  62. Linares J, Sitges-Serra A, Garau J, Perez JL, Martin R. Pathogenesis of catheter sepsis: a prospective study with quantitative and semiquantitative cultures of catheter hub and segments. J Clin Microbiol 1985; 21:357–60.

    PubMed  CAS  Google Scholar 

  63. Peters G, Locci R, Pulverer G. Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J Infect Dis 1982; 146:479–82.

    Article  PubMed  CAS  Google Scholar 

  64. de Cicco M, Panarello G, Chiaradia V, et al. Source and route of microbial colonisation of parenteral nutrition catheters. Lancet 1989; 2:1258–61.

    Article  PubMed  CAS  Google Scholar 

  65. Capell S, Linares J, Sitges-Serra A. Catheter sepsis due to coagulase-negative staphylococci in patients on total parenteral nutrition. Eur J Clin Microbiol 1986; 5:40–2.

    Article  PubMed  CAS  Google Scholar 

  66. Salzman MB, Isenberg HD, Shapiro JF, Lipsitz PJ, Rubin LG. A prospective study of the catheter hub as the portal of entry for microorganisms causing catheter-related sepsis in neonates. J Infect Dis 1993; 167:487–90.

    Article  PubMed  CAS  Google Scholar 

  67. Maki DG, Martin WT. Nationwide epidemic of septicemia caused by contaminated infusion products. IV. Growth of microbial pathogens in fluids for intravenous infusions. J Infect Dis 1975; 131:267–72.

    Article  PubMed  CAS  Google Scholar 

  68. Maki DG, Anderson RL, Shulman JA. In-use contamination of intravenous infusion fluid. Appl Microbiol 1974; 28:778–84.

    PubMed  CAS  Google Scholar 

  69. Maki DG. Pathogenesis, prevention and management of infections due to intravascular devices used for infusion therapy. In: Bisno AL, Waldvogel FA, eds. Infections Associated with Indwelling Medical Devices. Washington: Americal Society for Microbiology, 1989:161–77.

    Google Scholar 

  70. Anaissie E, Samonis G, Kontoyiannis D, et al. Role of catheter colonization and infrequent hematogenous seeding in catheter-related infections. Eur J Clin Microbiol Infect Dis 1995; 14:134–7.

    Article  PubMed  CAS  Google Scholar 

  71. Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985; 22:996–1006.

    PubMed  CAS  Google Scholar 

  72. Christensen GD, Simpson WA, Bisno AL, Beachey EH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37:318–26.

    PubMed  CAS  Google Scholar 

  73. Falcieri E, Vaudaux P, Huggler E, Lew D, Waldvogel F. Role of bacterial exopolymers and host factors on adherence and phagocytosis of Staphylococcus aureus in foreign body infection. J Infect Dis 1987; 155:524–31.

    Article  PubMed  CAS  Google Scholar 

  74. Costerton JW, Irvin RT, Cheng KJ. The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 1981; 35:299–324.

    Article  PubMed  CAS  Google Scholar 

  75. Sheth NK, Franson TR, Sohnle PG. Influence of bacterial adherence to intravascular catheters on in-vitro antibiotic susceptibility. Lancet 1985; 2:1266–8.

    Article  PubMed  CAS  Google Scholar 

  76. Farber BF, Kaplan MH, Clogston AG. Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis 1990; 161:37–40.

    Article  PubMed  CAS  Google Scholar 

  77. Davenport DS, Massanari RM, Pfaller MA, Bale MJ, Streed SA, Hierholzer WJ, Jr. Usefulness of a test for slime production as a marker for clinically significant infections with coagulase-negative staphylococci. J Infect Dis 1986; 153:332–9.

    Article  PubMed  CAS  Google Scholar 

  78. Ahmed N. Thrombosis after central venous cannulation. Med J Aust 1976; 1:217–20.

    PubMed  CAS  Google Scholar 

  79. Brismar B, Hardstedt C, Jacobson S. Diagnosis of thrombosis by catheter phlebography after prolonged central venous catheterization. Ann Surg 1981; 194:779–83.

    Article  PubMed  CAS  Google Scholar 

  80. Vaudaux P, Pittet D, Haeberli A, et al. Fibronectin is more active than fibrin or fibrinogen in promoting Staphylococcus aureus adherence to inserted intravascular catheters. J Infect Dis 1993; 167:633–41.

    Article  PubMed  CAS  Google Scholar 

  81. Vaudaux P, Pittet D, Haeberli A, et al. Host factors selectively increase staphylococcal adherence on inserted catheters: a role for fibronectin and fibrinogen or fibrin. J Infect Dis 1989; 160:865–75.

    Article  PubMed  CAS  Google Scholar 

  82. Raad II, Safar H. Long-term central venous catheters. Infectious complications and cost. In: Seifert H, Jansen B, Fair BM, eds. Catheter-Related Infections. New York: Marcel Dekker, Inc, 1997:307–324.

    Google Scholar 

  83. Hawiger J, Timmons S, Strong DD, Cottrell BA, Riley M, Doolittle RF. Identification of a region of human fibrinogen interacting with staphylococcal clumping factor. Biochemistry 1982; 21:1407–13.

    Article  PubMed  CAS  Google Scholar 

  84. Kuusela P. Fibronectin binds to Staphylococcus aureus. Nature 1978; 276:718–20.

    Article  PubMed  CAS  Google Scholar 

  85. Lopes JD, dos Reis M, Brentani RR. Presence of laminin receptors in Staphylococcus aureus. Science 1985; 229:275–7.

    Article  PubMed  CAS  Google Scholar 

  86. Herrmann M, Suchard SJ, Boxer LA, Waldvogel FA, Lew PD. Thrombospondin binds to Staphylococcus aureus and promotes staphylococcal adherence to surfaces. Infect Immun 1991; 59:279–88.

    PubMed  CAS  Google Scholar 

  87. Vaudaux P, Suzuki R, Waldvogel FA, Morgenthaler JJ, Nydegger UE. Foreign body infection: role of fibronectin as a ligand for the adherence of Staphylococcus aureus. J Infect Dis 1984; 150:546–53.

    Article  PubMed  CAS  Google Scholar 

  88. Herrmann M, Vaudaux PE, Pittet D, et al. Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J Infect Dis 1988; 158:693–701.

    Article  PubMed  CAS  Google Scholar 

  89. Bouali A, Robert R, Tronchin G, Senet JM. Characterization of binding of human fibrinogen to the surface of germ- tubes and mycelium of Candida albicans. J Gen Microbiol 1987; 133:545–51.

    PubMed  CAS  Google Scholar 

  90. Sherertz RJ. Pathogenesis of vascular catheter-related infections. In: Seifert H, Jansen B, Fair BM, eds. Catheter-Related Infections. New York: Marcel Dekker, Inc, 1997:1–29.

    Google Scholar 

  91. Chatzinikolaou I, Raad, II. Intravascular catheter-related infections: a preventable challenge in the critically ill. Semin Respir Infect 2000; 15:264–71.

    Article  PubMed  CAS  Google Scholar 

  92. Ashkenazi S, Weiss E, Drucker MM. Bacterial adherence to intravenous catheters and needles and its influence by cannula type and bacterial surface hydrophobicity. J Lab Clin Med 1986; 107:136–40.

    PubMed  CAS  Google Scholar 

  93. Rotrosen D, Gibson TR, Edwards JE, Jr. Adherence of Candida species to intravenous catheters. J Infect Dis 1983; 147:594.

    Article  PubMed  CAS  Google Scholar 

  94. Sheth NK, Franson TR, Rose HD, Buckmire FL, Cooper JA, Sohnle PG. Colonization of bacteria on polyvinyl chloride and Teflon intravascular catheters in hospitalized patients. J Clin Microbiol 1983; 18:1061–3.

    PubMed  CAS  Google Scholar 

  95. Sherertz RJ, Carruth WA, Marosok RD, Espeland MA, Johnson RA, Solomon DD. Contribution of vascular catheter material to the pathogenesis of infection: the enhanced risk of silicone in vivo. J Biomed Mater Res 1995; 29:635–45.

    Article  PubMed  CAS  Google Scholar 

  96. Lopez-Lopez G, Pascual A, Martinez-Martinez L, Perea EJ. Effect of a siliconized latex urinary catheter on bacterial adherence and human neutrophil activity. Diagn Microbiol Infect Dis 1991; 14:1–6.

    Article  PubMed  CAS  Google Scholar 

  97. Lopez-Lopez G, Pascual A, Perea EJ. Effect of plastic catheters on the phagocytic activity of human polymorphonuclear leukocytes. Eur J Clin Microbiol Infect Dis 1990; 9:324–8.

    Article  PubMed  CAS  Google Scholar 

  98. Marosok R, Washburn R, Indorf A, Solomon D, Sherertz R. Contribution of vascular catheter material to the pathogenesis of infection: depletion of complement by silicone elastomer in vitro. J Biomed Mater Res 1996; 30:245–50.

    Article  PubMed  CAS  Google Scholar 

  99. Locci R, Peters G, Pulverer G. Microbial colonization of prosthetic devices. I. Microtopographical characteristics of intravenous catheters as detected by scanning electron microscopy. Zentralbl Bakteriol Mikrobiol Hyg [B] 1981; 173:285–92.

    CAS  Google Scholar 

  100. Peters G, Locci R, Pulverer G. Microbial colonization of prosthetic devices. II. Scanning electron microscopy of naturally infected intravenous catheters. Zentralbl Bakteriol Mikrobiol Hyg [B] 1981; 173:293–9.

    CAS  Google Scholar 

  101. Stillman RM, Soliman F, Garcia L, Sawyer PN. Etiology of catheter-associated sepsis. Correlation with thrombogenicity. Arch Surg 1977; 112:1497–9.

    Article  PubMed  CAS  Google Scholar 

  102. Fuchs PC, Gustafson ME, King JT, Goodall PT. Assessment of catheter-associated infection risk with the Hickman right atrial catheter. Infect Control 1984; 5:226–30.

    PubMed  CAS  Google Scholar 

  103. Scheckelhoff DJ, Mirtallo JM, Ayers LW, Visconti JA. Growth of bacteria and fungi in total nutrient admixtures. Am J Hosp Pharm 1986; 43:73–7.

    PubMed  CAS  Google Scholar 

  104. Llop JM, Mangues I, Perez JL, Lopez P, Tubau M. Staphylococcus saprophyticus sepsis related to total parenteral nutrition admixtures contamination. JPEN J Parenter Enteral Nutr 1993; 17:575–7.

    Article  PubMed  CAS  Google Scholar 

  105. Dugleux G, Le Coutour X, Hecquard C, Oblin I. Septicemia caused by contaminated parenteral nutrition pouches: the refrigerator as an unusual cause. JPEN J Parenter Enteral Nutr 1991; 15:474–5.

    Article  PubMed  CAS  Google Scholar 

  106. Beck-Sague C, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980–1990. National Nosocomial Infections Surveillance System. J Infect Dis 1993; 167:1247–51.

    Article  PubMed  CAS  Google Scholar 

  107. Branchini ML, Pfaller MA, Rhine-Chalberg J, Frempong T, Isenberg HD. Genotypic variation and slime production among blood and catheter isolates of Candida parapsilosis. J Clin Microbiol 1994; 32:452–6.

    PubMed  CAS  Google Scholar 

  108. Murphy PM, Lane HC, Gallin JI, Fauci AS. Marked disparity in incidence of bacterial infections in patients with the acquired immunodeficiency syndrome receiving interleukin-2 or interferon-gamma. Ann Intern Med 1988; 108:36–41.

    PubMed  CAS  Google Scholar 

  109. Bock SN, Lee RE, Fisher B, et al. A prospective randomized trial evaluating prophylactic antibiotics to prevent triple-lumen catheter-related sepsis in patients treated with immunotherapy. J Clin Oncol 1990; 8:161–9.

    PubMed  CAS  Google Scholar 

  110. Siegel JP, Puri RK. Interleukin-2 toxicity. J Clin Oncol 1991; 9:694–704.

    PubMed  CAS  Google Scholar 

  111. Snydman DR, Sullivan B, Gill M, Gould JA, Parkinson DR, Atkins MB. Nosocomial sepsis associated with interleukin-2. Ann Intern Med 1990; 112:102–7.

    PubMed  CAS  Google Scholar 

  112. Levin A, Mason AJ, Jindal KK, Fong IW, Goldstein MB. Prevention of hemodialysis subclavian vein catheter infections by topical povidone-iodine. Kidney Int 1991; 40:934–8.

    Article  PubMed  CAS  Google Scholar 

  113. Tuazon CU. Skin and skin structure infections in the patient at risk: carrier state of Staphylococcus aureus. Am J Med 1984; 76:166–71.

    Article  PubMed  CAS  Google Scholar 

  114. Yu VL, Goetz A, Wagener M, et al. Staphylococcus aureus nasal carriage and infection in patients on hemodialysis. Efficacy of antibiotic prophylaxis. N Engl J Med 1986; 315:91–6.

    Article  PubMed  CAS  Google Scholar 

  115. Goldblum SE, Ulrich JA, Goldman RS, Reed WP. Nasal and cutaneous Staphylococcus among patients receiving hemodialysis and attending personnel. J Infect Dis 1982; 145:396.

    Article  PubMed  CAS  Google Scholar 

  116. Raad, II, Sabbagh MF, Rand KH, Sherertz RJ. Quantitative tip culture methods and the diagnosis of central venous catheter-related infections. Diagn Microbiol Infect Dis 1992; 15:13–20.

    Article  PubMed  CAS  Google Scholar 

  117. Cotton DJ, Gill VJ, Marshall DJ, Gress J, Thaler M, Pizzo PA. Clinical features and therapeutic interventions in 17 cases of Bacillus bacteremia in an immunosuppressed patient population. J Clin Microbiol 1987; 25:672–4.

    PubMed  CAS  Google Scholar 

  118. Riebel W, Frantz N, Adelstein D, Spagnuolo PJ. Corynebacterium JK: a cause of nosocomial device-related infection. Rev Infect Dis 1986; 8:42–9.

    Article  PubMed  CAS  Google Scholar 

  119. Saleh RA, Schorin MA. Bacillus sp. sepsis associated with Hickman catheters in patients with neoplastic disease. Pediatr Infect Dis J 1987; 6:851–6.

    Article  PubMed  CAS  Google Scholar 

  120. Young VM, Meyers WF, Moody MR, Schimpff SC. The emergence of coryneform bacteria as a cause of nosocomial infections in compromised hosts. Am J Med 1981; 70:646–50.

    Article  PubMed  CAS  Google Scholar 

  121. Elting LS, Bodey GP. Septicemia due to Xanthomonas species and non-aeruginosa Pseudomonas species: increasing incidence of catheter-related infections. Medicine (Baltimore) 1990; 69:296–306.

    CAS  Google Scholar 

  122. Seifert H, Strate A, Schulze A, Pulverer G. Vascular catheter-related bloodstream infection due to Acinetobacter johnsonii (formerly Acinetobacter calcoaceticus var. lwoffi): report of 13 cases. Clin Infect Dis 1993; 17:632–6.

    Article  PubMed  CAS  Google Scholar 

  123. Kiehn TE, Armstrong D. Changes in the spectrum of organisms causing bacteremia and fungemia in immunocompromised patients due to venous access devices. Eur J Clin Microbiol Infect Dis 1990; 9:869–72.

    Article  PubMed  CAS  Google Scholar 

  124. Middleton C, Lowenthal RM. Malassezia furfur fungemia as a treatable cause of obscure fever in a leukemia patient receiving parenteral nutrition. Aust N Z J Med 1987; 17:603–4.

    Article  PubMed  CAS  Google Scholar 

  125. Weiss SJ, Schoch PE, Cunha BA. Malassezia furfur fungemia associated with central venous catheter lipid emulsion infusion. Heart Lung 1991; 20:87–90.

    PubMed  CAS  Google Scholar 

  126. Barber GR, Brown AE, Kiehn TE, Edwards FF, Armstrong D. Catheter-related Malassezia furfur fungemia in immunocompromised patients. Am J Med 1993; 95:365–70.

    Article  PubMed  CAS  Google Scholar 

  127. Garcia CR, Johnston BL, Corvi G, Walker LJ, George WL. Intravenous catheter-associated Malassezia furfur fungemia. Am J Med 1987; 83:790–2.

    Article  PubMed  CAS  Google Scholar 

  128. Kiehn TE, Gorey E, Brown AE, Edwards FF, Armstrong D. Sepsis due to Rhodotorula related to use of indwelling central venous catheters. Clin Infect Dis 1992; 14:841–6.

    Article  PubMed  CAS  Google Scholar 

  129. Ammari LK, Puck JM, McGowan KL. Catheter-related Fusarium solani fungemia and pulmonary infection in a patient with leukemia in remission. Clin Infect Dis 1993; 16:148–50.

    Article  PubMed  CAS  Google Scholar 

  130. Kiehn TE, Nelson PE, Bernard EM, Edwards FF, Koziner B, Armstrong D. Catheter-associated fungemia caused by Fusarium chlamydosporum in a patient with lymphocytic lymphoma. J Clin Microbiol 1985; 21:501–4.

    PubMed  CAS  Google Scholar 

  131. Raad I, Hachem R. Treatment of central venous catheter-related fungemia due to Fusarium oxysporum. Clin Infect Dis 1995; 20:709–11.

    Article  PubMed  CAS  Google Scholar 

  132. Finkelstein R, Singer P, Lefler E. Catheter-related fungemia caused by trichosporon beigelii in non- neutropenic patients. Am J Med 1989; 86:133.

    Article  PubMed  CAS  Google Scholar 

  133. Sycova-Mila Z, Sufliarsky J, Trupl J, Jasenska Z, Blahva, Krcmery V, Jr. Catheter-associated septicaemia due to Trichosporon capitatum. J Hosp Infect 1992; 22:257–8.

    Article  PubMed  CAS  Google Scholar 

  134. Klein AS, Tortora GT, Malowitz R, Greene WH. Hansenula anomala: a new fungal pathogen. Two case reports and a review of the literature. Arch Intern Med 1988; 148:1210–3.

    Article  PubMed  CAS  Google Scholar 

  135. Haron E, Anaissie E, Dumphy F, McCredie K, Fainstein V. Hansenula anomala fungemia. Rev Infect Dis 1988; 10:1182–6.

    Article  PubMed  CAS  Google Scholar 

  136. Mermel LA, Fair BM, Sherertz RJ, et al. Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis 2001; 32:1249–72.

    Article  PubMed  CAS  Google Scholar 

  137. Maki DG. Infections due to infusion therapy. In: Bennett JV, Brachman PS, eds. Hospital Infections. Boston: Little, Brown and Co, 1992.

    Google Scholar 

  138. Heiselman D. Nosocomial bloodstream infections in the critically ill [letter; comment]. JAMA 1994; 272:1819–20.

    Article  PubMed  CAS  Google Scholar 

  139. Pittet D, Tarara D, Wenzel RP. Nosocomial bloodstream infection in critically ill patients. Excess length of stay, extra costs, and attributable mortality [see comments]. JAMA 1994; 271:1598–601.

    Article  PubMed  CAS  Google Scholar 

  140. National Nosocomial Infections Surveillance (NNIS) System report, data summary from October 1986-April 1998, issued June 1998. Am J Infect Control 1998; 26:522–33.

    Article  Google Scholar 

  141. Maki DG, Cobb L, Garman JK, Shapiro JM, Ringer M, Helgerson RB. An attachable silver-impregnated cuff for prevention of infection with central venous catheters: a prospective randomized multicenter trial. Am J Med 1988; 85:307–14.

    Article  PubMed  CAS  Google Scholar 

  142. Sherertz RJ, Carruth WA, Hampton AA, Byron MP, Solomon DD. Efficacy of antibiotic-coated catheters in preventing subcutaneous Staphylococcus aureus infection in rabbits. J Infect Dis 1993; 167:98–106.

    Article  PubMed  CAS  Google Scholar 

  143. Sherertz RJ, Forman DM, Solomon DD. Efficacy of dicloxacillin-coated polyurethane catheters in preventing subcutaneous Staphylococcus aureus infection in mice. Antimicrob Agents Chemother 1989; 33:1174–8.

    Article  PubMed  CAS  Google Scholar 

  144. Trooskin SZ, Donetz AP, Harvey RA, Greco RS. Prevention of catheter sepsis by antibiotic bonding. Surgery 1985; 97:547–51.

    PubMed  CAS  Google Scholar 

  145. Raad I, Darouiche R, Hachem R, Sacilowski M, Bodey GP. Antibiotics and prevention of microbial colonization of catheters. Antimicrob Agents Chemother 1995; 39:2397–400.

    Article  PubMed  CAS  Google Scholar 

  146. Raad I, Darouiche R, Hachem R, Mansouri M, Bodey GP. The broad-spectrum activity and efficacy of catheters coated with minocycline and rifampin. J Infect Dis 1996; 173:418–24.

    Article  PubMed  CAS  Google Scholar 

  147. Mermel LA, Stolz SM, Maki DG. Surface antimicrobial activity of heparin-bonded and antiseptic- impregnated vascular catheters [published erratum appears in J Infect Dis 1993 Nov; 168(5): 1342]. J Infect Dis 1993; 167:920–4.

    CAS  Google Scholar 

  148. Kamal GD, Pfaller MA, Rempe LE, Jebson PJ. Reduced intravascular catheter infection by antibiotic bonding. A prospective, randomized, controlled trial [see comments]. JAMA 1991; 265:2364–8.

    Article  PubMed  CAS  Google Scholar 

  149. Greenfeld JI, Sampath L, Popilskis SJ, Brunnert SR, Stylianos S, Modak S. Decreased bacterial adherence and biofilm formation on chlorhexidine and silver sulfadiazine-impregnated central venous catheters implanted in swine. Crit Care Med 1995; 23:894–900.

    Article  PubMed  CAS  Google Scholar 

  150. Bach A, Bohrer H, Motsch J, Martin E, Geiss HK, Sonntag HG. Prevention of bacterial colonization of intravenous catheters by antiseptic impregnation of polyurethane polymers. J Antimicrob Chemother 1994; 33:969–78.

    Article  PubMed  CAS  Google Scholar 

  151. Darouiche R, Raad I. Antimicrobial impregnated catheters and other medical implants and method for impregnating catheters and other medical implants with an antimicrobial agent. United States Patent. USA: Baylor College of Medicine, Houston; University of Texas System, Austin, both of Texas, 1997:1–18.

    Google Scholar 

  152. Maki DG, Stolz SM, Wheeler S, Mermel LA. Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter. A randomized, controlled trial [see comments]. Ann Intern Med 1997; 127:257–66.

    PubMed  CAS  Google Scholar 

  153. Ciresi DL, Albrecht RM, Volkers PA, Scholten DJ. Failure of antiseptic bonding to prevent central venous catheter- related infection and sepsis. Am Surg 1996; 62:641–6.

    PubMed  CAS  Google Scholar 

  154. Heard SO, Wagle M, Vijayakumar E, et al. Influence of triple-lumen central venous catheters coated with chlorhexidine and silver sulfadiazine on the incidence of catheter- related bacteremia. Arch Intern Med 1998; 158:81–7.

    Article  PubMed  CAS  Google Scholar 

  155. Pemberton LB, Ross V, Cuddy P, Kremer H, Fessler T, McGurk E. No difference in catheter sepsis between standard and antiseptic central venous catheters. A prospective randomized trial. Arch Surg 1996; 131:986–9.

    CAS  Google Scholar 

  156. Veenstra DL, Saint S, Saha S, Lumley T, Sullivan SD. Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis [see comments]. JAMA 1999; 281:261–7.

    Article  PubMed  CAS  Google Scholar 

  157. Mermel LA. Prevention of intravascular catheter-related infections. Ann Intern Med 2000; 132:391–402.

    PubMed  CAS  Google Scholar 

  158. George SJ, Vuddamalay P, Boscoe MJ. Antiseptic-impregnated central venous catheters reduce the incidence of bacterial colonization and associated infection in immunocompromised transplant patients. Eur J Anaesthesiol 1997; 14:428–31.

    Article  PubMed  CAS  Google Scholar 

  159. Collin GR. Decreasing catheter colonization through the use of an antiseptic-impregnated catheter: a continuous quality improvement project. Chest 1999; 115:1632–40.

    Article  PubMed  CAS  Google Scholar 

  160. Bach A, Schmidt H, Bottiger B, et al. Retention of antibacterial activity and bacterial colonization of antiseptic-bonded central venous catheters. J Antimicrob Chemother 1996; 37:315–22.

    Article  PubMed  CAS  Google Scholar 

  161. van Heerden PV, Webb SA, Fong S, Golledge CL, Roberts BL, Thompson WR. Central venous catheters revisited-infection rates and an assessment of the new Fibrin Analysing System brush. Anaesth Intensive Care 1996; 24:330–3.

    PubMed  CAS  Google Scholar 

  162. Ramsay J, Nolte F, Scwarzmann S. Incidence of catheter colonization and catheter related infection with an antiseptic impregnated triple lumen catheter [Abstract]. Critical Care Medicine 1994; 22:A115.

    Article  Google Scholar 

  163. Hannan M, Juste R, Shankar U, Nightingale C, Axadian B, Soni N. Colonization of triple lwmen catheters. A study of antiseptic bonded and standard catheters {Abstract}. Clin Intensive Care 1996; 7:56.

    Google Scholar 

  164. Logghe C, Van Ossel C, D’Hoore W, Ezzedine H, Wauters G, Haxhe JJ. Evaluation of chlorhexidine and silver-sulfadiazine impregnated central venous catheters for the prevention of bloodstream infection in leukaemic patients: a randomized controlled trial [see comments]. J Hosp Infect 1997; 37:145–56.

    Article  PubMed  CAS  Google Scholar 

  165. Tattawasart U, Maillard JY, Furr JR, Russell AD. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J Hosp Infect 1999; 42:219–29.

    Article  PubMed  CAS  Google Scholar 

  166. Oda T, Hamasaki J, Kanda N, Mikami K. Anaphylactic shock induced by an antiseptic-coated central venous [correction of nervous] catheter [published erratum appears in Anesthesiology 1998 Feb;88(2):560] [see comments]. Anesthesiology 1997; 87:1242–4.

    Article  PubMed  CAS  Google Scholar 

  167. 167. World Health Organization:. Central venous catheters (Arrow-guard) recalled: anaphylactic shock (alert 62). Geneva: World Health Organization, 1997.

    Google Scholar 

  168. Marik PE, Abraham G, Careau P, Varon J, Fromm RE, Jr. The ex vivo antimicrobial activity and colonization rate of two antimicrobial-bonded central venous catheters. Crit Care Med 1999; 27:1128–31.

    Article  PubMed  CAS  Google Scholar 

  169. Darouiche RO, Raad, II, Heard SO, et al. A comparison of two antimicrobial-impregnated central venous catheters. Catheter Study Group [see comments]. N Engl J Med 1999; 340:1–8.

    Article  PubMed  CAS  Google Scholar 

  170. Raad, II, Darouiche RO, Hachem R, et al. Antimicrobial durability and rare ultrastructural colonization of indwelling central catheters coated with minocycline and rifampin [see comments]. Crit Care Med 1998; 26:219–24.

    Article  PubMed  CAS  Google Scholar 

  171. Raad II, Hackett B, Hanna HA, Graviss L, Botz R. Use of antibiotic impregnated catheters associated with significant decrease in nosocomial bloodstream infections in critically ill cancer patients [Abstract], Programs and Abstracts of the 4th Decennial Conference on Nososcomial and Healthcare - Associated Infections in conjuction with the 10th Annual Meeting of Society for Healthcare Epidemiology of America, Atlanta, Georgia, March 5–9, 2000, 2000.

    Google Scholar 

  172. Tambe SM, Sampath L, Modak SM. In vitro evaluation of the risk of developing bacterial resistance to antiseptics and antibiotics used in medical devices. J Antimicrob Chemother 2001; 47:589–98.

    Article  PubMed  CAS  Google Scholar 

  173. Veenstra DL, Lipsky BA. The cost-effectiveness of minocycline/rifampin vs chlorhexidine/silver sulfadiazine central venous catheters. Proc. 4th Decennial International Conference on Nosocomial and Healthcare - Associated Infections in conjunction with the 10th Annual Meeting of Society for Healthcare Epidemiology of America, March 5–9, 2000. Atlanta, Georgia, 2000.

    Google Scholar 

  174. Wenzel RP, Edmond MB. The evolving technology of venous access. N Engl J Med 1999; 340:48–50.

    Article  PubMed  CAS  Google Scholar 

  175. Saint S, Veenstra DL, Lipsky BA. The clinical and economic consequences of nosocomial central venous catheter-related infection: are antimicrobial catheters useful? Infect Control Hosp Epidemiol 2000; 21:375–80.

    Article  PubMed  CAS  Google Scholar 

  176. Marin MG, Lee JC, Skurnick JH. Prevention of nosocomial bloodstream infections: effectiveness of antimicrobial-impregnated and heparin-bonded central venous catheters. Crit Care Med 2000; 28:3332–8.

    Article  PubMed  CAS  Google Scholar 

  177. Bassetti S, Hu J, D’Agostino RB, Jr., Sherertz RJ. Prolonged antimicrobial activity of a catheter containing chlorhexidine- silver sulfadiazine extends protection against catheter infections in vivo. Antimicrob Agents Chemother 2001; 45:1535–8.

    Article  PubMed  CAS  Google Scholar 

  178. Tcholakian RK, Raad, II. Durability of anti-infective effect of long-term silicone sheath catheters impregnated with antimicrobial agents. Antimicrob Agents Chemother 2001; 45:1990–3.

    Article  PubMed  CAS  Google Scholar 

  179. Appelgren P, Ransjo U, Bindslev L, Espersen F, Larm O. Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: results from a prospective, randomized trial. Crit Care Med 1996; 24:1482–9.

    Article  PubMed  CAS  Google Scholar 

  180. Goldschmidt H, Hahn U, Salwender HJ, et al. Prevention of catheter-related infections by silver coated central venous catheters in oncological patients. Zentralbl Bakteriol 1995; 283:215–23.

    Article  PubMed  CAS  Google Scholar 

  181. Raad I, Hachem R, Zermeno A, Dumo M, Bodey GP. In vitro antimicrobial efficacy of silver iontophoretic catheter. Biomaterials 1996; 17:1055–9.

    Article  PubMed  CAS  Google Scholar 

  182. Raad I, Hachem R, Zermeno A, Stephens LC, Bodey GP. Silver iontophoretic catheter: a prototype of a long-term antiinfective vascular access device. J Infect Dis 1996; 173:495–8.

    Article  PubMed  CAS  Google Scholar 

  183. Ziebuhr W, Heilmann C, Gotz F, et al. Detection of the intercellular adhesion gene cluster (ica) and phase variation in Staphylococcus epidermidis blood culture strains and mucosal isolates. Infect Immun 1997; 65:890–6.

    PubMed  CAS  Google Scholar 

  184. Sun Q, Smith GM, Zahradka C, McGavin MJ. Identification of D motif epitopes in Staphylococcus aureus fibronectin- binding protein for the production of antibody inhibitors of fibronectin binding. Infect Immun 1997; 65:537–43.

    PubMed  CAS  Google Scholar 

  185. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chatzinikolaou, I., Raad, I.I. (2003). Central Venous Catheter Related Infections: The Role of Antimicrobial Catheters. In: Doughty, L.A., Linden, P. (eds) Immunology and Infectious Disease. Molecular and Cellular Biology of Critical Care Medicine, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0245-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0245-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4984-6

  • Online ISBN: 978-1-4615-0245-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics