Skip to main content

Host Microbicidal Actions of the Innate Immune Response

  • Chapter
  • 180 Accesses

Part of the book series: Molecular and Cellular Biology of Critical Care Medicine ((MCCM,volume 3))

Abstract

The human body is constantly under assault by potential microbial pathogens. In addition to the enormous numbers of micro-organisms that we ingest, inhale, aspirate, and come in direct contact with on a daily basis, the average human has 1014 (one hundred trillion) micro-organisms in the alimentary tract and on epithelial surfaces throughout the body (1). Transient bacteremia is a frequent event from oral microbial flora or skin flora following minor trauma to these areas (e.g. 25% incidence of bacteremia with brushing teeth) (2). A multitude of fungal spores are inhaled on a daily basis and humans are repeatedly exposed to potentially pathogenic respiratory viruses in the environment. Our very existence is absolutely dependent upon an ever vigilant and efficient antimicrobial defense system. In this introductory chapter, we will review the fundamental elements of the host defense system and describe the basic strategies employed against bacteria, viruses, and fungi.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Savage DC. Microbial ecology of the gastro-intestinal tract. Ann Rev Med. 1997; 31:107–133.

    Google Scholar 

  2. Everett FD, Hirshmann JV. Transient bacteremia and endocarditis prophylaxis: a review. Medicine. 1977; 56:61–77.

    PubMed  CAS  Google Scholar 

  3. Casadevall A, Pirofskil-A. Host-pathogen interactions: redefining basic concepts of virulence and pathogenicity. Infect Immun 1999; 67:3703–3713.

    PubMed  CAS  Google Scholar 

  4. Janeway CA, Jr., The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992; 13:11–16.

    Article  PubMed  CAS  Google Scholar 

  5. Opal SM. The phylogenetic relationships between the inflammatory networks. Crit Care Med. 2000; 28:577–582.

    Article  Google Scholar 

  6. Lekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med. 2000; 343:1703–1714.

    Article  PubMed  CAS  Google Scholar 

  7. Malech HC, Nauseef WM. Primary inherited defects in neutrophil function: etiology and treatment. Semin Hematol 1997; 34:279–290.

    PubMed  CAS  Google Scholar 

  8. Doan CA. The neutropenic state: its significance and therapeutics rationale. JAMA. 1932;99:194–202.

    Article  Google Scholar 

  9. Simms HH, Frank MM, Quinn TC, Holland S, Gaither TA. Studies on phagocytosis in patients with acute bacterial infections. J Clin Invest. 1989; 83:252–260.

    Article  PubMed  CAS  Google Scholar 

  10. Finlay-Jones JJ, Hart PH, Spencer LK, Nulsen MF, Kenny PA, McDonald PJ. Bacterial killing in vitro by abscess-derived neutrophils. J Med Microbiol. 1991; 34:73–81.

    Article  PubMed  CAS  Google Scholar 

  11. Alexiewicz JM, Kumar D, Smorgorzewski M, Klin M, Massry SG. Polymorphonuclear leukocytes in non-insulin-dependent diabetes mellitus: abnormalities in metabolism and function. Ann Intern Med. 1995; 123:919–924.

    PubMed  CAS  Google Scholar 

  12. Medzhitov R, Preston-Hurlburt P, Janeway, CA. A human homologue of the Drosphila toll protein signals activation of adaptive immunity. Nature. 1997, 388:394–397.

    Article  PubMed  CAS  Google Scholar 

  13. Hoshino K., et al. Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide evidence for TLR4 as the LPS gene product. J. Immunol. 1999; 162:3749–3752.

    PubMed  CAS  Google Scholar 

  14. Rock FL, Hardiman G, Timans JE, Kastelein RA, Bazan JF. A family of human receptors structurally related to Drosphila Toll. Proc Natl Acad Sci USA. 1998, 95:588–593.

    Article  PubMed  CAS  Google Scholar 

  15. Yoshimura A, et al. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999; 163:1–5.

    PubMed  CAS  Google Scholar 

  16. Underhill DM, et al. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 1999, 401:811–815.

    Article  PubMed  CAS  Google Scholar 

  17. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S. A toll-like receptor recognizes bacterial DNA. Nature. 2000, 408:740–744.

    Article  PubMed  CAS  Google Scholar 

  18. Lipford GB, Heeg K, Wagner H. Bacterial DNA as immune cell activator. Trends Microbiol. 1998; 6:496–500.

    Article  PubMed  CAS  Google Scholar 

  19. Brightbill HD et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science. 1999; 285:732–736.

    Article  PubMed  CAS  Google Scholar 

  20. Aliprantis AO, et al. Cell activations and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science. 1999; 285:736–739.

    CAS  Google Scholar 

  21. Coxon A, Tang T, Mayadas TN. Cytokine-activated endothelial cells delay neutrophil apoptosis in vitro and in vivo. A role for granulocyte-macrophage colony stimulating factor. J Exp Med. 1999; 190:923–934

    Article  PubMed  CAS  Google Scholar 

  22. Dulkanchainun TS, Goss JA, Imagawa DK, Shaw GD, Anselmo DM, Kaldas F, Wang T, Shao D, Ashley A, Busuttil A, Kato H, Murry NGB, Kupiec-Weglinski JW, Busuttil RW. Reduction of hepatic ischemia/reperfusion injury by a soluble P-selectin glycoprotein ligand-1. Ann Surg. 1998; 227:832–840.

    Article  PubMed  CAS  Google Scholar 

  23. Ley K, Bullard DC, Arbones ML, Bosse R, Vestweber D, Tedder TF, Beaudet AL. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med. 1995; 181:669–675.

    Article  PubMed  CAS  Google Scholar 

  24. Jung U, Ley K. Mice lacking two or all three selectins demonstrate overlapping and distinct functions for each selectin1. J Immunol. 1999; 6755–6762.

    Google Scholar 

  25. Munoz FM, Hawkins EP, Bullard DC, Beaudet AL, Kaplan SL. Host defense against systemic infection with Streptococcus pneumoniae is impaired in E-, P-, and E-/P-selectin-deficient mice. J Clin Invest. 1997; 100:2009–2106.

    Article  Google Scholar 

  26. Yee AMF, Phan HM, Zuniga R, Salmon JE, Musher DM. Association between Fcγ RIIa-R131 allotype and bacteremic pneumococcal pneumonia. Clin Infect Dis. 2000; 30:25–28.

    Article  PubMed  CAS  Google Scholar 

  27. Galán JE, Collmer A. Type III secretion machines: bacterial devises for protein delivery into host cells. Science. 1999; 284:1322–1328.

    Article  PubMed  Google Scholar 

  28. Kaufmann SHE. Immunity to intracellular microbial pathogens. Immunol Today. 1995; 16:338–342.

    Article  PubMed  CAS  Google Scholar 

  29. Zychlinsky A, Prévost MC, Sansonetti PJ. Shigella flexneri induces apoptosis in infected macrophages. Nature. 1992; 358:167–169.

    Article  PubMed  CAS  Google Scholar 

  30. Lehrer RI, Ganz T, Selsted ME. Defensins: Natural peptide_antibiotics from neutrophils. ASM News. 1990; 56:315–318.

    Google Scholar 

  31. Finlay BB, Falco S. Common themes in microbial pathogenecity revisited. Microbiol Mol Biol Rev. 1997; 61:136–169.

    PubMed  CAS  Google Scholar 

  32. Kanangat S, Meduri GU, Tolley EA, et al. Effects of cytokines and endotoxin on the intracellular growth of bacteria. Infect Immun. 1999; 67:2834–2840.

    CAS  Google Scholar 

  33. Clark RA, Malech HL, Gallin JL, et al. Genetic variants of chronic granulomatous disease: prevalence of deficiencies of two cytosolic components of the NADPH oxidase system. N Engl J Med. 1989; 321:647–652.

    Article  PubMed  CAS  Google Scholar 

  34. Winkelstein JA, Marino MC, Johnston RB, Jr., et al. Chronic granulomatous disease: report on a national registry of 368 patients. Medicine (Baltimore) 2000; 79:159–169.

    Google Scholar 

  35. Tkalcevic J, Noelli M, Phylactides M, et al. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity. 2000; 12:201–210.

    Article  PubMed  CAS  Google Scholar 

  36. Rosenberg HF, Gallin JL. Neutrophil-specific granule deficiency includes eosinophils. Blood. 1993; 82:268–271.

    PubMed  CAS  Google Scholar 

  37. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation. Science. 1999; 285:221–227.

    Article  PubMed  CAS  Google Scholar 

  38. Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med. 1998, 338:1813–1820.

    Article  PubMed  CAS  Google Scholar 

  39. Fantuzzi G, Reed D, Dinarello CA. IL-12-induced interferon- is dependent on caspase-1 processing of the IL-18 precursor. J Clin Invest. 1999; 104:761–767.

    Article  PubMed  CAS  Google Scholar 

  40. Kohno K, Kataoka J, Ohtsuki T, Suemoto Y, Okamoto I, Usui M, et al. IFN-gamma-inducing factor (IGIF) is a costimulatory factor on the activation of Th 1 but not Th2 cells and exerts its effect independently of IL-12. J Immunol. 1997; 158:1541–1550.

    PubMed  CAS  Google Scholar 

  41. Netea MG, Fantuzzi G, Kullberg BJ, Stuyt RJ, Pulido EJ, McIntyre RC Jr, et al. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia. J Immunol. 2000; 164:2644–2649

    PubMed  CAS  Google Scholar 

  42. Tsutui H, Kayagaki N, Kuida K, Nakano H, Hayashi N, Takeda K, et al. Caspase-1-independent, Fas/Fas ligand-mediated IL-18 secretion from macrophages causes acute liver injury in mice. Immunity. 1999; 11:359–367.

    Article  Google Scholar 

  43. 43. Kaufman SHE. γ/δ and other unconventional T lymphocytes: what do they see and what do they do? Proc Natl Acad Sci USA. 1996; 93:2277–2279.

    Google Scholar 

  44. Purcell SA. The CD1 family: a third lineage of antigen-presenting molecules. Adv Immunol. 1995; 59:1–98.

    Article  Google Scholar 

  45. Porter RR. Structure and activation of the early components of complement. Fed Proc. 1977; 36:2191–6.

    PubMed  CAS  Google Scholar 

  46. Ross SC, Densen P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of Neisserial and other infections in an immune deficiency. Medicine. 1984; 243–273.

    Google Scholar 

  47. Gotze O, Muller-Eberhard HJ. The C3 activator system: an alternate pathway of complement activation. J Exp Med. 1971. 134:Suppl:90–108.

    Google Scholar 

  48. Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996;

    Google Scholar 

  49. Schweinie JE, Ezekowitz R. Alan B., Tenner AJ, Kuhlman M, Joiner KA. Human mannose-binding protein activates the alternative complement pathway and enhances serum bactericidal activity on a mannose-rich isolate of Salmonella. J Clin Invest. 1989; 84:1821–1829.

    Article  Google Scholar 

  50. Polotsky VY, Fischer W, Ezekowitz R. Alan B, Joiner KA. Interactions of human mannose-binding protein with lipoteichoic acids. Infect Immun. 1996; 64:380–383.

    PubMed  CAS  Google Scholar 

  51. Summerfield JA, Sumiya M, Levin M, Turner MW. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. Brit Med J. 1997; 314:1229–1231.

    Article  PubMed  CAS  Google Scholar 

  52. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med. 1999; 340:438–454.

    Article  Google Scholar 

  53. Fattori E, Cappelletti M, Costa P, et al. Defective inflammatory response to interleukin-6-deficient mice. J Exp Med. 1994; 180:1243–1250.

    Article  PubMed  CAS  Google Scholar 

  54. Cermak J, Key MS, Bach R, Baila J, Jacob HS, Vercellotti GM. C-reactive protein induces human peripheral blood monocytes to synthesize tissue factor. Blood. 1993; 82:513–520.

    PubMed  CAS  Google Scholar 

  55. Mold C, Gewurz H, DuClos TW. Regulation of complement activation by C-reactive protein. Immunopharmacology 1999; 42:23–30.

    Article  PubMed  CAS  Google Scholar 

  56. Mortensen RF, Zhong W. Regulation of phagocytic leukocyte activities by C-reactive protein. J Leukoc Biol. 2000; 67:495–500.

    PubMed  CAS  Google Scholar 

  57. Wurfel MM, Kunitake ST, Lichenstein H, Kane JP, Wright ST. Lipopolysaccharide (LPS)-binding protein is carried on lipoproteins and acts as a co-factor in the neutralization of LPS. J Exp Med. 1994; 180:1025–1035.

    Article  PubMed  CAS  Google Scholar 

  58. Ulevitch RJ, Tobias PS. Recognition of Gram-negative bacteria and endotoxin by the innate immune system. Curr Opin Immunol. 1999; 11:19–22.

    Article  PubMed  CAS  Google Scholar 

  59. Jack RS, Fan X, Bernheiden M, et al. Lipopolysaccharide-binding protein is required to combat a murine Gram-negative bacterial infection. Nature. 1997; 389:742–745.

    Article  PubMed  CAS  Google Scholar 

  60. Lamping N, Dettmer R. Schröder NI, et al. LPS-binding protein protects mice from septic shock caused by LPS or Gram-negative bacteria. J Clin Invest. 1998; 101:2065–2071.

    Article  PubMed  CAS  Google Scholar 

  61. Viriyakosol S, Mathison JC, Tobias PS, Kirkland TN. Structure-function analysis of CD 14 as a soluble receptor for lipopolysaccharide. J Biol Chem. 2000; 275:3144–3149

    Article  PubMed  CAS  Google Scholar 

  62. Rey Nores JE, Bensussan A, Vita N, Stelter F, Arias MA, Jones M, LeFort S, Borysiewicz LK, Ferrara P, Labeta MO. Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur J Immunol. 1999; 29:265–276.

    Article  PubMed  CAS  Google Scholar 

  63. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol. 1999; 163:1–5.

    PubMed  CAS  Google Scholar 

  64. Joklik WK. “Interferons” in Fields Virology, Fields BN, Knipe DM., eds New York, NY: Raven Press, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Opal, S.M., Yap, R.L. (2003). Host Microbicidal Actions of the Innate Immune Response. In: Doughty, L.A., Linden, P. (eds) Immunology and Infectious Disease. Molecular and Cellular Biology of Critical Care Medicine, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0245-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0245-6_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4984-6

  • Online ISBN: 978-1-4615-0245-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics