Advertisement

Function of PACAP in the Hypothalamo-Pituitary Complex

  • M. Malagón
  • J. P. Castaño
  • S. García-Navarro
  • A. J. Martínez-Fuentes
  • F. Gracia-Navarro
Part of the Endocrine Updates book series (ENDO, volume 20)

Abstract

It is widely known that the original naming of the pituitary adenylate cyclase-activating polypeptide (PACAP) after its isolation by Arimura and colleagues derived from the ability of this peptide to increase cAMP production in cultures of rat pituitary cells (Miyata et al, 1989). This observation, together with the accompanying report that PACAP stimulates the release of most pituitary hormones from superfused rat pituitary cells, strongly suggested that PACAP was a new and important hypophysiotropic factor. Subsequent studies failed to demonstrate such a clear role for PACAP, while progressively revealing a number of important functions for this peptide in other tissues and organs. This has prompted an exciting and enduring debate on the true hypophysiotropic functions of PACAP. In this chapter, we review and update the most relevant findings on the study of the functions and mechanisms of action of PACAP in the hypothalamus and the pituitary gland.

Keywords

Pituitary Cell Vasoactive Intestinal Polypeptide Pituitary Adenylate Cyclase Activate Polypeptide Median Eminence Pituitary Adenylate Cyclase Activate Polypeptide Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams EF, Buchfelder M, Peterson B, Fahlbusch R. Effect of pituitary adenylate cyclaseactivating polypeptide on human somatotrophic tumours in cell culture. Endocr J (UK) 1994;2:75–79.Google Scholar
  2. Alarcón P, García-Sancho J. Differential calcium responses to the pituitary adenylate cyclaseactivating polypeptide (PACAP) in the five main cell types of rat anterior pituitary. Pflugers Arch 2000;440:685–691.CrossRefPubMedGoogle Scholar
  3. Alexandre D, Anouar Y, Jégou S, Vaudry H. Structure and distribution of the mRNAs encoding pituitary adenylate cyclase-activating polypeptide and growth hormone-releasing hormone-like peptide in the frog Rana ridibunda. J Comp Neurol, 2000;421:234–246.CrossRefPubMedGoogle Scholar
  4. Alexandre D, Vaudry H, Turquier V, Fournier A, Jégou S, Anouar Y. Novel splice variants of type I pituitary adenylate cyclase-activating polypeptide receptor in frog exhibit altered Gs-protein coupling and differential relative abundance. Endocrinology, 2002;143: 2680–2692.CrossRefPubMedGoogle Scholar
  5. Anderson ST, Sawangjaroen K, Curlewis JD. Pituitary adenylate cyclase-activating polypeptide acts within the medial basal hypothalamus to inhibit prolactin and luteinizing hormone secretion. Endocrinology 1996;137:3424–3429.CrossRefPubMedGoogle Scholar
  6. Anderson ST, Curlewis JD. PACAP stimulates dopamine neuronal activity in the medial basal hypothalamus and inhibits prolactin. Brain Res 1998;790:343–346.CrossRefPubMedGoogle Scholar
  7. Aoki Y, Iwasaki Y, Katahira M, Oiso Y, Saito H. Regulation of the rat proopiomelanocortin gene expression in AtT-20 cells. II: Effects of the pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal polypeptide. Endocrinology 1997;138:1930–1934.CrossRefPubMedGoogle Scholar
  8. Arbogast LA, Voogt JL. Pituitary adenylate cyclase-activating polypeptide (PACAP) increases prolactin release and tuberoinfundibular dopaminergic neuronal activity. Brain Res 1994;655:17–24.CrossRefPubMedGoogle Scholar
  9. Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: Highly abundant in the rat brain and testes. Endocrinology 1991;129:2787–2789.Google Scholar
  10. Arimura A, Shioda S. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors: neuroendocrine and endocrine interaction. Front Neuroendocrinol 1995;16:53–58.CrossRefPubMedGoogle Scholar
  11. Benter S, Leonhardt S, Wuttke W, Jarry H. Paracrine cell to cell interactions determine the effects of pituitary adenylate cyclase activating polypeptide (PACAP) on in vitro prolactin release from rat pituitary cells. Exp Clin Endocrinol Diabetes 1995;103:386–390.CrossRefPubMedGoogle Scholar
  12. Braas KM, Brandenburg CA, May V. Pituitary adenylate cyclase-activating polypeptide regulation of AtT-20/D16v corticotrope cell proopiomelanocortin expression and secretion. Endocrinology 1994;134:186–195.CrossRefPubMedGoogle Scholar
  13. Brabet P, Jamen F, Rodriguez-Henche N, Bertrand G, Bockaert J. PACAP receptor knockout and transgenics. What have we learnt? In Pituitary Adenylate Cyclase-Activating Polypeptide, Vaudry H and Arimura A, eds. Boston: Kluwer Academic Publishers 2002:pp323–346.Google Scholar
  14. Bresson-Bepoldin L, Jacquot MC, Schlegel W, Rawlings SR. Multiple splice variants of the pituitary adenylate cyclase-activating polypeptide type 1 receptor detected by RT-PCR in single rat pituitary cells. J Mol Endocrinol 1998;21:109–120.CrossRefPubMedGoogle Scholar
  15. Boutillier AL, Monnier D, Koch B, Loeffler JP. Pituitary adenylate cyclase-activating peptide: A hypophysiotropic factor that stimulates proopiomelanocortin gene transcription, and proopiomelanocortin-derived peptide secretion in corticotropic cells. Neuroendocrinology 1994;60:493–502.CrossRefPubMedGoogle Scholar
  16. Canny BJ, Rawlings SR, Leong DA. Pituitary adenylate cyclase-activating polypeptide specifically stimulates cytosolic free calcium concentration in rat gonadotropes and somatotropes. Endocrinology 1992;130:211–215.CrossRefPubMedGoogle Scholar
  17. Cauvin A, Robberecht P, De Neef P, Gourlet P, Vandermeers A, Vandermeers-Piret, MC, Christophe J. Properties and distribution of receptors for pituitary adenylate cyclaseactivating peptide (PACAP) in rat brain and spinal cord. Regul Pept 1991;35:161–173.CrossRefPubMedGoogle Scholar
  18. Chartrel N, Tonon MC, Vaudry H, Conlon JM. Primary structure of frog pituitary adenylate cyclase-activating polypeptide (PACAP) and effects of ovine PACAP on frog pituitary. Endocrinology 1991;129:3367–3371.CrossRefPubMedGoogle Scholar
  19. Chiodera P, Volpi R, Capretti L, Coiro V. Effects of intravenously infused pituitary adenylate cyclase-activating polypeptide on arginine vasopressin and oxytocin secretion in man. Neuroreport 1995;6:1490–1492.CrossRefPubMedGoogle Scholar
  20. Chiodera P, Volpi R, Capretti L, Caffarri G, Magotti MG, Coiro V. Effects of intravenously infused pituitary adenylate cyclase-activating polypeptide on adenohypophyseal hormone secretion in normal men. Neuroendocrinology 1996;64:242–246.CrossRefPubMedGoogle Scholar
  21. Choi EJ, Ha CM, Kim MS, Kand JH, Park SK, Choi WS, Kang SG, Lee, BJ. Central administration of an antisense oligodeoxynucleotide against type I pituitary adenylate cyclase-activating polypeptide receptor suppresses synthetic activities of LHRH-LH axis during the pubertal process. Mol Brain Res 2000;80:35–45.CrossRefPubMedGoogle Scholar
  22. Coleman DT, Chen X, Sassaroli M, Bancroft C. Pituitary adenylate cyclase-activating polypeptide regulates prolactin promoter activity via a protein kinase A-mediated pathway that is independent of the transcriptional pathway employed by thyrotropin-releasing hormone. Endocrinology 1996;137:1276–1285.CrossRefPubMedGoogle Scholar
  23. Culler MD, Paschall CS. Pituitary adenylate cyclase-activating polypeptide (PACAP) potentiates the gonadotropin-releasing activity of luteinizing hormone-releasing hormone. Endocrinology 1991;129:2260–2262.CrossRefPubMedGoogle Scholar
  24. D’Agata V, Cavallaro S, Stivala F, Canonico PL. Tissue-specific and developmental expression of pituitary adenylate cyclase-activating polypeptide (PACAP) receptors in rat brain. Eur J Neurosci 1996;8:310–318.CrossRefPubMedGoogle Scholar
  25. Desai BJ, Monson JP, Holdstock JG, Aylwin SJ, Geddes JF, Wood DF, Burrin JM. Effects of pituitary adenylate cyclase-activating polypeptide on hormone secretion by human pituitary adenomas in vitro. J Clin Endocrinol Metab 1994;79:1771–1777.CrossRefPubMedGoogle Scholar
  26. Dow RC, Bennie J, Fink G. Pituitary adenylate cyclase-activating peptide-38 (PACAP)-38 is released into hypophysial portal blood in the normal male and female rat. J Endocrinol 1994;142:R1–R4.CrossRefPubMedGoogle Scholar
  27. Evans JJ. Modulation of gonadotropin levels by peptides acting at the anterior pituitary gland. Endocrin Rev 1999;20:46–67.CrossRefGoogle Scholar
  28. Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev 2000;80:1523–15631.PubMedGoogle Scholar
  29. Garrel G, McArdle CA, Hemmings BA, Counis R. Gonadotropin-releasing hormone and pituitary adenylate cyclase-activating polypeptide affect levels of cyclic adenosine 3’,5’- monophosphate-dependent protein kinase A (PKA) subunits in the clonal gonadotrope aT3–1 cells: Evidence for cross-talk between PKA and protein kinase C pathways. Endocrinology 1997;138:2259–2266.CrossRefPubMedGoogle Scholar
  30. Ghatei MA, Takahashi K, Suzuki Y, Gardnier J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol 1993;136:159–166.CrossRefPubMedGoogle Scholar
  31. Giustina A, Veldhuis JD. Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 1998;19:717–797.CrossRefPubMedGoogle Scholar
  32. Gloddek J, Pagotto U, Paez Pereda M, Arzt E, Stalla GK, Renner U. Pituitary adenylate cyclase-activating polypeptide, interleukin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary fol-liculostellate cells. J Endocrinol 1999;160:483–490.CrossRefPubMedGoogle Scholar
  33. Gobbetti A, Zerani M, Miano A, Bramucci M, Murri O, Amici D. Presence of pituitary adenylate cyclase-activating polypeptide 38-immuno-like material in the brain and ovary of the female crested newt, Triturus carnifex: Its involvement in the ovarian synthesis of prostaglandins and steroids. J Endocrinol 1997;152:141–146.CrossRefPubMedGoogle Scholar
  34. Gottschall PE, Tatsuno I, Miyata A, Arimura A. Characterization and distribution of binding sites for the hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide. Endocrinology 1990;127:272–277.CrossRefPubMedGoogle Scholar
  35. Goth MY, Lyons CE, Canny B J, Thorner MO. Pituitary adenylate cyclase activating polypeptide, growth hormone (GH)-releasing peptide, and GH-releasing hormone stimulate GH release through distinct pituitary receptors. Endocrinology 1992;130:939–944.CrossRefPubMedGoogle Scholar
  36. Gracia-Navarro F, Lamacz M, Tonon MC, Vaudry H. Pituitary adenylate cyclase-activating polypeptide stimulates calcium mobilization in amphibian pituitary cells. Endocrinology 1992;131:1069–1074.CrossRefPubMedGoogle Scholar
  37. Gray SL, Cummings KJ, Jirik FR, Sherwood NM. Targeted disruption of the pituitary adenylate cyclase-activating polypeptide gene results in early postnatal death associated with dysfunction of lipid and carbohydrate metabolism. Mol Endocrinol 2001;15:17391747.Google Scholar
  38. Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Res 1997;773:190–196.CrossRefPubMedGoogle Scholar
  39. Gur G, Rosenfled H, Melamed P, Meiri I, Elizur A, Yaron Z. Tilapia glycoprotein hormone a subunit: cDNA cloning and hypothalamic regulation. Mol Cell Endocrinol 2001;182:4960.CrossRefGoogle Scholar
  40. Ha CM, Kand JH, Choi EJ, Kim MS, Park J-W, Kim Y, Choi WS, Chun SY, Kwon HB, Lee BJ. Progestorone increases mRNA levels of pituitary adenylate cyclase-activating polypeptide (PACAP) and type I PACAP receptor (PAC1) in the rat hypothalamus. Mol Brain Res 2000;78:59–68.CrossRefPubMedGoogle Scholar
  41. Hamelink C, Tjurmina 0, Damadzic R, Young WS, Weihe E, Lee HW, Eiden LE. Pituitary adenylate cyclase-activating polypeptide is a sympathoadrenal neurotransmitter involved in catecholamine regulation and glucohomeostasis. Proc Natl Acad Sci USA 2002;99:461–466.CrossRefPubMedGoogle Scholar
  42. Hammond PJ, Talbot K, Chapman R, Ghatei MA, Bloom SR. Vasoactive intestinal peptide, but not pituitary adenylate cyclase-activating polypeptide, modulates the responsiveness of the gonadotroph to LHRH in man. J Endocrinol 1993;137:529–532.CrossRefPubMedGoogle Scholar
  43. Hammond PJ, Smith DM, Akinsanya KO, Mufti WA, Wynick D, Bloom SR. Signalling pathways mediating secretory and mitogenic responses to galanin and pituitary adenylate cyclase-activating polypeptide in the 235–1 clonal rat lactotroph cell line. J Neuroendocrinol 1996;8:457–464.CrossRefPubMedGoogle Scholar
  44. Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J. Gene expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat hypothalamus. Regut Pept 1995a;55:133–148.CrossRefGoogle Scholar
  45. Hannibal J, Mikkelsen JD, Fahrenkrug J, Larsen PJ. Pituitary adenylate cyclase-activating peptide gene expression in corticotropin-releasing factor-containing parvicellular neurons of the rat hypothalamic paraventricular nucleus is induced by colchicine, but not by adrenalectomy, acute osmotic, ether, or re-straint stress. Endocrinology 1995b;136:4116–4124.CrossRefGoogle Scholar
  46. Hannibal J, Jessop DS, Fahrenkrug J, Harbuz MS, Larsen PJ. PACAP gene expression in neurons of the rat hypothalamo-pituitary-adrenocortical axis is induced by endotoxin and interleukin-lbeta. Neuroendocrinology 1999;70:73–78.CrossRefPubMedGoogle Scholar
  47. Hart GR, Gowing H, Burrin JM. Effects of a novel hypothalamic peptide pituitary adenylate cyclase-activating polypeptide on pituitary hormone release in rats. J Endocrinol 1992;134:33–41.CrossRefPubMedGoogle Scholar
  48. Hashimoto H, Nogi H, Mori K, Ohishi H, Shigemoto R, Yamamoto K, Matsuda T, Mizuno N, Nagata S, Baba A. Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain: An in situ hybridization study. J Comp Neurol 1996;371:567–577.CrossRefPubMedGoogle Scholar
  49. Hashizume T, Soliman EB, Kanematsu S. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP), prostaglandin E2 (PGE2), and growth homone releasing factor (GRF) on the release of growth hormone from cultured bovine anterior pituitary cells in vitro. Domest Anim Endocrinol 1994;11:331–337.CrossRefPubMedGoogle Scholar
  50. Hezareh M, Journot L, Bépoldin L, Schlegel W, Rawlings SR. PACAPNIP receptor subtypes, signal transducers, and effectors in pituitary cells. Ann NY Acad Sci 1996a;805:315–327.CrossRefGoogle Scholar
  51. Hezareh M, Schlegel W, Rawlings SR. PACAP and VIP stimulate Ca2+oscillations in rat gonadotrophs through the PACAPNIP type 1 receptor (PVR1) linked to a pertussis toxin-insensitive G-protein and the activation of phospholipase C-13. J Neuroendocrinol 1996b;8:367–374.CrossRefGoogle Scholar
  52. Hezareh M, Schlegel W, Rawlings SR. Stimulation of Ca2+influx in aT3–1 gonadotrophs via the cAMP/PKA signalling system. Am J Physiol 1997;273:E850–858.PubMedGoogle Scholar
  53. Hidalgo-Diaz C, González de Aguilar JL, Martínez-Fuentes AJ, García-Navarro S, GraciaNavarro F. Effect of PACAP on LH release and intracellular calcium mobilization in porcine pituitary cells. Neth J Zool 1995;45:166–168.CrossRefGoogle Scholar
  54. Howe A. The mammalian pars intermedia: a review of its structure and function. J Endocrinol 59:385–409.Google Scholar
  55. Hu Z, Lelievre V, Chao A, Zhou X, Waschek JA. Characterization and messenger ribonucleic acid distribution of a cloned pituitary adenylate cyclase-activating polypeptide type 1 receptor in the frog Xenopus laevis brain. Endocrinology 2000a;141:657–665.CrossRefGoogle Scholar
  56. Hu Z, Lelievre V, Tam J, Cheng JW, Fuenzalida G, Zhou X, Waschek JA. Molecular cloning of growth hormone-releasing hormone/pituitary adenylyl cyclase-activating polypeptide in the frog Xenopus laevis: brain distribution and regulation after castration. Endocrinology 2000b;141:3366–3376.CrossRefGoogle Scholar
  57. Huang SK, Pan JT. Stimulatory effects of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide on tuberoinfundibular dopaminergic neuron activity in estrogen-treated ovariectomized rats and their correlation with prolactin secretion. Neuroendocrinology 1996;64:208–214.CrossRefPubMedGoogle Scholar
  58. Jamen F, Persson K, Bertrand G, Rodriguez-Henche N, Puech R, Bockaert J, Ahren B, Brabet P. PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. Clin Invest 2000;105:1307–1315.CrossRefGoogle Scholar
  59. Jarry H, Leonhardt S, Schmidt WE, Creutzfeldt W, Wuttke W. Contrasting effects of pituitary adenylate cyclase activating polypeptide (PACAP) on in vivo and in vitro prolactin and growth hormone release in male rats. Life Sci 1992;51:823–830.CrossRefPubMedGoogle Scholar
  60. Jaworski DM, Proctor MD. Developmental regulation of pituitary adenylate cyclaseactivating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Brain Res Dev Brain Res 2000;120:27–39.CrossRefPubMedGoogle Scholar
  61. Jeandel L, Yon L, Chartrel N, Gonzalez B, Fournier A, Conlon JM, Vaudry H. Characterization and localization of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites in the brain of the frog Rana ridibunda. J Comp Neurol 1999;412:218–228.CrossRefPubMedGoogle Scholar
  62. Jin L, Tsumanuma I, Ruebel KH, Bayliss JM, Lloyd RV. Analysis of homogeneous populations of anterior pituitary folliculostellate cells by laser capture microdissection and reverse transcription-polymerase chain reaction. Endocrinology 2001;142:1703–1709.CrossRefPubMedGoogle Scholar
  63. Kántor O, Molnár J, Arimura A, Köves K. PACAP 38 and PACAP 27 administered intracerebroventricularly have an opposite effect on LH secretion. Peptides 2000;21:817–820.CrossRefGoogle Scholar
  64. Katayama T, Nakashima M, Kyan H, Murakami H, Kuroda H. A role of pituitary adenylate cyclase activating polypeptide (PACAP) as a regulator of paracrine interactions between folliculo-stellate cells and gonadotropes through the control of activin-follistatin interactions. J Vet Med Sci 2000;62:731–736.CrossRefPubMedGoogle Scholar
  65. Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, Miyata A, Jiang L, Dahl RR, Stibbs H, Arimura A, Fujino M. A novel peptide which stimulates adenylate cyclase: Molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 1990;166:81–89.CrossRefPubMedGoogle Scholar
  66. Kimura S, Ohshige Y, Lin L, Okumura T, Yanaihara C, Yanaihara N, Shiotani Y. Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: Light and electron microscopic immunocytochemical studies. J Neuroendocrinol 1994;6:503–507.CrossRefPubMedGoogle Scholar
  67. Koch B, Lutz-Bucher B. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates cyclic AMP formation as well as peptide output of cultured pituitary melanotrophs and AtT-20 corticotrophs. Regul Pept 1992a;38:45–53.CrossRefGoogle Scholar
  68. Koch B, Lutz-Bucher B. Pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates cyclic AMP formation in pituitary fibroblasts and 3T3 tumor fibroblasts: lack of enhancement by protein kinase C activation. Mol Cell Endocrinol 1992b;87:79–86.CrossRefGoogle Scholar
  69. Kojima M, Hosoda H, Matsuo H, Kangawa K. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab 2001;12:118–122.CrossRefPubMedGoogle Scholar
  70. Koshimura K, Murakami Y, Mitsushima M, Hori T, Kato Y. Activation of Na+channels in GH3 cells and human pituitary adenoma cells by PACAP. Peptides 1997;18:877–883.CrossRefPubMedGoogle Scholar
  71. Köves K, Arimura A, Görcs TG, Somogyvári-Vigh A. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 1991;54:159–169.CrossRefPubMedGoogle Scholar
  72. Köves K, Görcs TG, Arimura A. Colocalization of PACAP, but not of VIP, with oxytocin in hypothalamic magnocellular neurons of colchicine treated and pituitary stalk sectioned rats. Endocr J 1994;2:1169–1175.Google Scholar
  73. Köves K, Molnár J, Kántor O, Lakatos S, Göres TJ, Somogyvári-Vigh A, Furst Z, Arimura A. PACAP participates in the regulation of the hormonal events preceeding the ovulation. Acta Biol Hun 1996;47:239–249.Google Scholar
  74. Köves K, Kántor O, Scammell JG, Arimura A. PACAP colocalizes with luteinizing and follicle-stimulating hormone immunoreactivities in the anterior lobe of the pituitary gland. Peptides 1998;19:1069–1072.CrossRefPubMedGoogle Scholar
  75. Légrádi G, Hannibal J, Lechan RM. Association between pituitary adenylate cyclaseactivating polypeptide and thyrotropin-releasing hormone in the rat hypothalamus. Chem Neuroanat 1997;13:265–279.CrossRefGoogle Scholar
  76. Légradi G, Hannibal J, Lechan RM. Pituitary adenylate cyclase-activating polypeptide-nerve terminals densely innervate corticotropin-releasing hormone-neurons in the hypothalamic paraventricular nucleus of the rat. Neurosci Lett 1998;246:145–148.CrossRefPubMedGoogle Scholar
  77. Leonhardt S, Jarry H, Kreipe A, Werstler K and Wuttke W. Pituitary adenylate cyclaseactivating polypeptide (PACAP) stimulates pituitary hormone release in male rats. Neuroendocrinol Lett 1992;14:319–328.Google Scholar
  78. Le Pechon-Vallee C, Magalon K, Rasolonjanahary R, Enjalbert A, Gerard C. Vasoactive intestinal polypeptide and pituitary adenylate cyclase-activating polypeptides stimulate mitogen-activated protein kinase in the pituitary cell line GH4C1 by a 3’,5’-cyclic adenosine monophosphate pathway. Neuroendocrinology 2000;72:46–56.CrossRefPubMedGoogle Scholar
  79. Li S, Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and somatostatin gene expression in the rat brain. Mol Brain Res 1996;41:157–162.CrossRefPubMedGoogle Scholar
  80. Lutz-Bucher B, Monnier D, Koch B. Evidence for the presence of receptors for pituitary adenylate cyclase-activating polypeptide in the neurohypophysis that are positively coupled to cyclic AMP formation and neurohypophyseal hormone secretion. Neuroendocrinology 1996;64:153–161.CrossRefPubMedGoogle Scholar
  81. Mains RE, Eipper BA. Synthesis and secretion of corticotropins, melanotropins, and endorphins by rat intermediate pituitary cells. J Biol Chem 1979;254:7885–7894.PubMedGoogle Scholar
  82. Martínez-Fuentes AJ, González de Aguilar JL, Lacuisse S, Kikuyama S, Vaudry H, GraciaNavarro F. Effect of frog pituitary adenylate cyclase-activating polypeptide (PACAP) on amphibian pituitary cells. In: Rosselin G, ed. Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Polypeptide and Related Regulatory Peptides. Singapore: World Scientific;1994:376–380.Google Scholar
  83. Martínez-Fuentes AJ, Castano JP, Malagín MM, Vázquez-Martinez R, Gracia-Navarro F. Pituitary adenylate cyclase-activating polypeptides 38 and 27 increase cytosolic free Ca2+ concentration in porcine somatotropes through common and distinct mechanisms. Cell Calcium 1998a;23:369–378.CrossRefGoogle Scholar
  84. Martínez-Fuentes AJ, Casteafio JP, Gracia-Navarro F, Malagón MM. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP27 activate common and distinct intracellular signaling pathways to stimulate growth hormone secretion from porcine somatotropes. Endocrinology 1998b;139:5116–5124.CrossRefGoogle Scholar
  85. Martínez-Fuentes AJ, Malagón MM, Castafio JP, Garrido-Gracia JC, Gracia-Navarro F. Pituitary adenylate-cyclase activating polypeptide (PACAP) 38 and PACAP27 differentially stimulate growth hormone release and mRNA accumulation in porcine somatotropes. Life Sci 1998c;62:2379–2390.CrossRefGoogle Scholar
  86. Masuo Y, Suzuki N, Matsumoto H, Tokito F, Matsumoto Y, Tsuda M, Fujino M. Regional distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat central nervous system as determined by sandwich-enzyme immunoassay. Brain Res 1993;602:57–63.CrossRefPubMedGoogle Scholar
  87. Matsumoto H, Koyama C, Sawada T, Koike K, Hirota K, Miyake A, Arimura A. Inoue K. Pituitary folliculo-stellate-like cell line (TtT/GF) responds to novel hypophysiotropic peptide (pituitary adenylate cyclase-activating peptide), showing increased adenosine 3’,5’-monophosphate and interleukin-6 secretion and cell proliferation. Endocrinology 1993;133:2150–2155.CrossRefPubMedGoogle Scholar
  88. McArdle CA, Counis R. GnRH and PACAP action in gonadotropes. Cross-talk between phosphoinositidase C and adenylyl cyclase mediated signaling path-ways. Trends Endocrinol Metab 1996;7:168–175.CrossRefPubMedGoogle Scholar
  89. Miyata A, Arimura A, Dahl DH, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH. Isolation of a novel 38 residue hypothalamic peptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 1989;164:567–574.CrossRefPubMedGoogle Scholar
  90. Miyata A, Dahl RD, Jiang L, Kitada C, Kubo K, Fujino M, Minamino N, Arimura A. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun 1990;170:643–648.CrossRefPubMedGoogle Scholar
  91. Montero M, Yon L, Rousseau K, Arimura A, Fournier A, Dufour S, Vaudry H. Distribution, characterization, and growth hormone-releasing activity of pituitary adenylate cyclase activating polypeptide in the European eel, Anguilla anguilla. Endocrinology 1998;139:4300–4310.CrossRefPubMedGoogle Scholar
  92. Montero M, Yon L, Kikuyama S, Dufour S, Vaudry H. Molecular evolution of the growth hormone-releasing hormone/pituitary adenylate cyclase-activating polypeptide gene family. Functional implication in the regulation of growth hormone secretion. J Mol Endocrinol 2000;25:157–168.CrossRefPubMedGoogle Scholar
  93. Murakami Y, Koshimura K, Yamauchi K, Nishiki M, Tanaka J, Furuya H, Miyake T, Kato Y. Pituitary adenylate cyclase activating polypeptide (PACAP) stimulates growth hormone release from GH3 cells through type II PACAP receptor. Regul Pept 1995;56:35–40.CrossRefPubMedGoogle Scholar
  94. Murakami Y, Nishiki M, Yamauchi K, Koshimura K, Yanaihara N, Kato Y. Effects of pituitary adenylate cyclase-activating polypeptide on prolactin, growth hormone and cortisol secretion in normal male subjects. Biomed Res 1996;17:161–164.Google Scholar
  95. Murakami Y, Koshimura K, Yamauchi K, Nishiki M, Tanaka J, Kato Y. Roles and mechanisms of action of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth hormone and prolactin secretion. Endocr J 2001;48:123–132.CrossRefPubMedGoogle Scholar
  96. Murase T, Kondo K, Otake K, Oiso Y. Pituitary adenylate cyclase-activating polypeptide stimulates arginine vasopressin release in conscious rats. Neuroendocrinology 1993;57:1092–1096.CrossRefPubMedGoogle Scholar
  97. Nagy H, Vigh S, Arimura A. PACAP induces prolactin and growth hormone release in lactating rats separated from their pups. Endocr J 1993;1:169–173.Google Scholar
  98. Nomura M, Ueta Y, Serino R, Kabashima N, Shibuya I, Yamashita H. PACAP type I receptor gene expression in the paraventricular and supraoptic nuclei of rats. Neuroreport 1996;8:67–70.CrossRefPubMedGoogle Scholar
  99. Nowak JZ, Kuba K, Zawilska JB. PACAP-induced formation of cyclic AMP in the chicken brain: Regional variations and the effect of melatonin. Brain Res 1999;830:195–199.CrossRefPubMedGoogle Scholar
  100. Nussdorfer GG, Malendowitz LK. Role of VIP, PACAP, and related peptides in the regulation of the hypothalamo-pituitary-adrenal axis. Peptides 1998;19:1443–1467.CrossRefPubMedGoogle Scholar
  101. Olcese J, McArdle CA, Middendorff R, Greenland K. Pituitary adenylate cyclase-activating peptide and vasoactive intestinal peptide receptor expression in immortalized LHRH neurons. J Neuroendocrinol 1997;9:937–943.CrossRefPubMedGoogle Scholar
  102. Ortmann O, Asmus W, Diedrich K, Schulz KD, Emons G. Interactions of ovarian steroids with pituitary adenylate cyclase-activating polypeptide and GnRH in anterior pituitary cells. Eur J Endocrinol 1999;140:207–214.CrossRefPubMedGoogle Scholar
  103. Osuga Y, Mitsuhashi N, Mizuno M. In vivo effect of pituitary adenylate cyclase-activating polypeptide 38 (PACAP 38) on the secretion of luteinizing hormone (LH) in male rats. Endocrinol Jpn 1992;39:153–156.CrossRefPubMedGoogle Scholar
  104. Peeters K, Langouche L, Vandesande F, Darras VM, Berghman LR. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cAMP formation and growth hormone release from chicken anterior pituitary cells. Ann N Y Acad Sci 1998;865:471–474.CrossRefPubMedGoogle Scholar
  105. Peeters K, Gerets HH, Arckens L, Vandesande F. Distribution of pituitary adenylate cyclaseactivating polypeptide and pituitary adenylate cyclase-activating polypeptide type receptor mRNA in the chicken brain. J Comp Neurol 2000;423:66–82.CrossRefPubMedGoogle Scholar
  106. Pincas H, Laverrière JN, Counis R. Pituitary adenylate cyclase-activating polypeptide and cyclic adenosine 3’, 5’-monophosphate stimulate the promoter activity of the rat gonasotropin-releasing hormone receptor gene via a bipartite response element in gonadotrope-derived cells. J Biol Cell 2001;276:23562–23571.Google Scholar
  107. Propato-Mussafiri R, Kanse SM, Ghatei MA, Bloom SR. Pituitary adenylate cyclaseactivating polypeptide releases 7B2, adrenocorticotrophin, growth hormone and prolactin from the mouse and rat clonal pituitary cell lines. AtT-20 and GH3. J Endocrinol 1992;132:107–113.CrossRefPubMedGoogle Scholar
  108. Radleff-Schlimme A, Leonhardt S, Wuttke W, Jarry H. Evidence for PACAP to be an autocrine factor on gonadotrope cells. Ann N Y Acad Sci 1998;865:486–491.CrossRefPubMedGoogle Scholar
  109. Rawlings SR, Piuz I, Schlegel W, Bockaert J, Journot L. Differential expression of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide receptor subtypes in clonal pituitary somatotrophs and gonadotrophs. Endocrinology 1995;136:2088–2098.CrossRefPubMedGoogle Scholar
  110. Rawlings SR. Pituitary adenylate cyclase-activating polypeptide regulates [Ca2+]i and electrical activity in pituitary cells through a cell type-specific mechanism. Trends Endocrinol Metab 1996;7:18–22.Google Scholar
  111. Rawlings SR, Hezareh M. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAPNasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr Rev 1996;17:4–29.PubMedGoogle Scholar
  112. Reglödi D, Somogyvári-Vigh A, Vigh J, Li M, Lengvari I, Arimura A. Pituitary adenylate cyclase activating polypeptide is highly abundant in the nervous system of anoxia-tolerant turtle, Pseudemys scripta elegans. Peptides 2001;22:873–878.CrossRefPubMedGoogle Scholar
  113. RenéF, Monnier D, Gaiddon C, Félix J-M, Loeffler J-P. Pituitary adenylate cyclaseactivating polypeptide transduces through cAMP/PKA and PKC pathways and stimulates proopiomelanocortin gene transcription in mouse melanotropes. Neuroendocrinology 1996;64:2–13.CrossRefPubMedGoogle Scholar
  114. Robberecht P, Vertongen P, Velkeniers B, de Neef P, Vergani P, Raftopoulos C, Brotchi J, Hooghe-Peters EL, Christophe J. Receptors for pituitary adenylate cyclase activating peptides in human pituitary adenomas. J Clin Endocrinol Metab 1993;77:1235–1239.CrossRefPubMedGoogle Scholar
  115. Sawangjaroen K, Curlewis JD. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) on prolactin, luteinizing hormone and growth hormone secretion in the ewe. J Neuroendocrinol 1994;6:549–555.CrossRefPubMedGoogle Scholar
  116. Sawangjaroen K, Anderson ST, Curlewis JD. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) on hormone secretion from sheep pituitary cells in vitro. J Neuroendocrinol 1997;9:279–286.CrossRefPubMedGoogle Scholar
  117. Seki Y, Suzuki Y, Baskaya MK, Kano T, Saito K, Takayasu M, Shibuya M, Sugita K. The effects of pituitary adenylate cyclase-activating polypeptide on cerebral arteries and vertebral artery blood flow in anesthetized dogs. Eur J Pharmacol 1995;275:259–266.CrossRefPubMedGoogle Scholar
  118. Sherwood NM, Krueckl SL, McRory JE. The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 2000;21:619–670.CrossRefPubMedGoogle Scholar
  119. Sherwood N, Gray S, Cummings K. Consequences of PACAP gene knockout. In Pituitary Adenylate Cyclase-Activating Polypeptide, Vaudry H and Arimura A, eds. Boston: Kluwer Academic Publishers 2002:pp347–360.Google Scholar
  120. Shibuya I, Kabashima N, Tanaka K, Setiadji VS, Noguchi J, Harayama N, Ueta Y. Yamashita H. Patch-clamp analysis of the mechanism of PACAP-induced excitation in rat supraoptic neurones. J Neuroendocrinol 1998;10:759–768.CrossRefPubMedGoogle Scholar
  121. Shioda S, Shuto Y, Somogyva ri-Vigh A, Legradi G, Onda H, Coy DH, Nakajo S, Arimura A. Localization and gene expression of the receptor for pituitary adenylate cyclase-activating polypeptide in the rat brain. Neurosci Res 1997a;28:345–354.CrossRefGoogle Scholar
  122. Shioda S, Yada T, Nakajo S, Nakaya K, Nakai Y, Arimura A. Pituitary adenylate cyclaseactivating polypeptide (PACAP): A novel regulator of vasopressin-containing neurons. Brain Res 1997b;765:81–90.CrossRefGoogle Scholar
  123. Soto JL, Castrillo JL, Dominguez F, Diéguez C. Regulation of the pituitary-specific transcription factor GHF-1/Pit-1 messenger ribonucleic acid levels by growth hormonesecretagogues in rat anterior pituitary cells in monolayer culture. Endocrinology 1995;136:3863–3870.CrossRefPubMedGoogle Scholar
  124. Takahashi K, Totsune K, Murakami O, Satoh F, Sone M, Ohneda M, Sasano H, Mouri T. Pituitary adenylate cyclase-activating polypeptide (PACAP)-like immunoreactivity in human hypothalamus: Co-localization with arginine vasopressin. Regul Pept 1994;50:267–275.CrossRefPubMedGoogle Scholar
  125. Tanaka K, Shibuya I, Harayama N, Nomura M, Kabashima N, Ueta Y, Yamashita H. Pituitary adenylate cyclase-activating polypeptide potentiation of Ca2+ entry via protein kinase C and A pathways in melanotrophs of the pituitary pars intermedia of rats. Endocrinology 1997;138:4086–4095.CrossRefPubMedGoogle Scholar
  126. Tatsuno I, Somogyvari-Vigh A, Mizuno K, Gottschall PE, Hidaka H, Arimura A. Neuropeptide regulation of interleukin-6 production from the pituitary: stimulation by pituitary adenylate cyclase activating polypeptide and calcitonin gene-related peptide. Endocrinology 1991;129:1797–1804.CrossRefPubMedGoogle Scholar
  127. Tohei A, Matsuzaki M, Kogo H. Antagonist of pituitary adenylate cyclase activating polypeptide suppresses prolactin secretion without changing the activity of dopamine neurons in lactating rats. Neuroendocrinology 2001;73:68–74.CrossRefPubMedGoogle Scholar
  128. Tsujii T, Ishizaka K, Winters SJ. Effects of pituitary adenylate cyclase-activating polypeptide on gonadotropin secretion and subunit messenger ribonucleic acids in perifused rat pituitary cells. Endocrinology 1994;135:826–833.CrossRefPubMedGoogle Scholar
  129. Tsujii T, Winters SJ. Effects of pulsatile pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropins secretion and subunit mRNA levels in perifused rat pituitary cells. Life Sci 1995;56:1103–1111.CrossRefPubMedGoogle Scholar
  130. Uchimura D, Katafuchi T, Hori T, Yanaihara N. Facilitatory effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on neurons in the magnocellular portion of the rat hypothalamic paraventricular nucleus (PVN) in vitro. J Neuroendocrinol 1996;8:137143.Google Scholar
  131. Ur E, Grossman A. “The neuroregulation of corticotropin secretion”. In The Pituitary Gland, Imura H ed., 2nd Edition. New York: Raven Press;1994:pp309–330.Google Scholar
  132. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev 2000;52:269–324.PubMedGoogle Scholar
  133. Velkeniers B, Zheng L, Kazemzadeh M, Robberecht P, Vanhaelst L, Hooghe-Peters EL. Effect of pituitary adenylate cyclase activating polypeptide 38 on growth hormone and prolactin expression. J Endocrinol 1994;143:1–11.CrossRefPubMedGoogle Scholar
  134. Vertongen P, Velkeniers B, Hooghe-Peters E, Robberecht P. Differential alternative splicing of PACAP receptor in pituitary cell subpopulations. Mol Cell Endocrinol 1995;113:131–135.CrossRefPubMedGoogle Scholar
  135. Vertongen P, Schiffmann SN, Gourlet P, Robberecht P. Autoradiographic visualization of the receptor subclasses for vasoactive intestinal polypeptide (VIP) in rat brain. Peptides 1997;18:1547–1554.CrossRefPubMedGoogle Scholar
  136. Vigh S, Arimura A, Gottschall PE, Kitada C, Somogyvari-Vigh A, Childs GV. Cytochemical characterization of anterior pituitary target cells for the neuropeptide, pituitary adenylate cyclase-activating polypeptide (PACAP), using biotinylated ligands. Peptides 1993;14:5965.CrossRefGoogle Scholar
  137. Wei L, Chan WS-W, Butler B, Cheng K. Pituitary adenylate cyclase activating polypeptideinduced desensitization on growth hormone release from rat primary pituitary cells. Biochem Biophys Res Commun 1993;197:1396–1401.CrossRefPubMedGoogle Scholar
  138. Winters SJ, Tsujii T, Attardi B. Effects of GnRH and PACAP on gonadotropin secretion and subunit messenger RNAs. Ann N Y Acad Sci 1996;805:343–354.CrossRefPubMedGoogle Scholar
  139. Winters SJ, Dalkin AC, Tsujii T. Evidence that pituitary adenylate cyclase-activating polypeptide suppresses follicle-stimulating hormone-I3 messenger ribonucleic acid levels by stimulating follistatin gene transcription. Endocrinology 1997;138:4324–4329.CrossRefPubMedGoogle Scholar
  140. Wong AO, Leung MY, Shea WL, Tse LY, Chang JP, Chow BK. Hypophysiotropic action of pituitary adenylate cyclase-activating polypeptide (PACAP) in the goldfish: immunohistochemical demonstration of PACAP in the pituitary, PACAP stimulation of growth hormone release from pituitary cells, and molecular cloning of pituitary type I PACAP receptor. Endocrinology 1998;139:3465–3479.CrossRefPubMedGoogle Scholar
  141. Wong AO, Li WS, Lee EK, Leung MY, Tse LY, Chow BK, Lin HR, Chang JP. Pituitary adenylate cyclase activating polypeptide as a novel hypophysiotropic factor in fish. Biochem Cell Biol 2000;78:329–343.CrossRefPubMedGoogle Scholar
  142. Yada T, Vigh S, Arimura A. Pituitary adenylate cyclase-activating polypeptide (PACAP) increases cytosolic-free calcium concentration in folliculo-stellate cells and somatotropes of rat pituitary. Peptides 1993;14:235–239.CrossRefPubMedGoogle Scholar
  143. Yamauchi K, Murakami Y, Nishiki M, Tanaka J, Koshimura K, Kato Y. Possible involvement of vasoactive intestinal polypeptide in the central stimulating action of pituitary adenylate cyclase-activating polypeptide on prolactin secretion in the rat. Neurosci Lett 1995;189:131–134.CrossRefPubMedGoogle Scholar
  144. Yamauchi K, Murakami Y, Koshimura K, Nishiki M, Tanaka J, Kato Y. Involvement of pituitary adenylate cyclase-activating polypeptide in growth hormone secretion induced by serotoninergic mechanisms in the rat. Endocrinology 1996;137:1693–1697.CrossRefPubMedGoogle Scholar
  145. Yon L, Feuilloley M, Chartrel N, Arimura A, Conlon JM, Fournier A, Vaudry H. Immunohistochemical distribution and biological activity of pituitary adenylate cyclaseactivating polypeptide (PACAP) in the central nervous system of the frog Rana ridibunda. J Comp Neurol 1992;324:485–489.CrossRefPubMedGoogle Scholar
  146. Yon L, Jeandel L, Chartrel N, Feuilloley M, Conlon JM, Arimura A, Fournier A, Vaudry H. Neuroanatomical and physiological evidence for the involvement of pituitary adenylate cyclase-activating polypeptide in the regulation of the distal lobe of the frog pituitary. J Neuroendocrinol 1993;5:289–296.CrossRefPubMedGoogle Scholar
  147. Yon L, Alexandre D, Montero M, Chartrel N, Jeandel L, Vallarino M, Conlon JM, Kikuyama S, Fournier A, Gracia-Navarro F, Roubos E, Chow B, Arimura A, Anouar Y, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors in amphibians. Microsc Res Tech 2001;54:137–157.CrossRefPubMedGoogle Scholar
  148. Yonehara T, Kanasaki H, Yamamoto H, Fukunaga K, Miyazaki K, Miyamoto E. Involvement of mitogen-activated protein kinase in cyclic adenosine 3’,5’-monophosphate-induced hormone gene expression in rat pituitary GH(3) cells. Endocrinology 2001;142:2811–2819.CrossRefPubMedGoogle Scholar
  149. Zhou CJ, Kikuyama S, Shibanuma M, Hirabayashi T, Nakajo S, Arimura A, Shioda S. Cellular distribution of the splice variants of the receptor for pituitary adenylate cyclaseactivating polypeptide (PAC(1)-R) in the rat brain by in situ RT-PCR. Brain Res Mol Brain Res 2000;75:150–158.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. Malagón
    • 1
  • J. P. Castaño
    • 1
  • S. García-Navarro
    • 1
  • A. J. Martínez-Fuentes
    • 1
  • F. Gracia-Navarro
    • 1
  1. 1.Department of Cell BiologyUniversity of CÓrdobaCÓrdobaSpain

Personalised recommendations