Advertisement

Function of PACAP in the Immune System

  • M. Delgado
  • J. Leceta
  • R. P. Gomariz
Part of the Endocrine Updates book series (ENDO, volume 20)

Abstract

Optimal host defense is the resultant of the regulatory interactions between the three systems implicated in the homeostasis of the organism: the nervous, endocrine and immune systems. These three systems constitute a complex network whose behavior, in the last twenty years, has been studied by a now well established area of research: the neuroimmunomodulation. This science has experienced an explosive growth not only in basic research, but also expanding to the point that prospective clinical research could be now a reality. A crucial factor for the functioning of this network was the demonstration that the cells of nervous, endocrine and immune systems synthesize and secrete similar substances bearing the same receptors for them, reducing traditional differences between neurotransmitters, hormones and immune mediators. The fact that neurons and endocrine cells possessed similar substances was soon established, and it was later when cells of the immune system were involved. In this sense, the first contributions performed in 1980 showed that macrophages and lymphocytes were able to produce ACTH and endorphins (Blalock and Smith, 1980). Moreover, some years later, two important facts demonstrated that lymphocytes were competent to produce peptidic hormones and neuropeptides: lymphocytes possess the biochemical machinery for a regulated secretory pathway as well as the necessary proteases, as furin and other convertases to process neuropeptides (Taplits et al, 1988;Decroly et al, 1996;1997).

Keywords

Vasoactive Intestinal Peptide Vasoactive Intestinal Polypeptide Endotoxic Shock FasL Expression PACI Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Abad C, Martinez C, Leceta J, Gomariz RP, Delgado M. Pituitary adenylate cyclase-activating polypeptide inhibits collagen-induced arthritis: and experimental immunomodulatory therapy. J Immunol 2001;167:3182–89.PubMedGoogle Scholar
  2. Berke G. The CTL kiss of death. Cell 1995;81:9–12.PubMedCrossRefGoogle Scholar
  3. Blalock JE, Smith EM. Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc Natl Acad Sci USA 1980;77:5972–74.PubMedCrossRefGoogle Scholar
  4. Cain BS, Meldrum DR, Harken AH, McIntyre RC. The physiologic basis for anticitokine clinical trials in the treatment of sepsis. J Am Coll Surg 1998;186:337–50.PubMedCrossRefGoogle Scholar
  5. Chatterjee TK, Sharma RV, Fisher RA. Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of the L-type calcium channels. J Biol Chem 1996;271:33226–32.Google Scholar
  6. Couvineau A, Rouyer-Fessard C, Darmoul D, Maoret JJ, Carrero I, Ogier-Denis E, Laburthe M. Human intestinal VIP receptor: Cloning and functional expression of two cDNA encoding proteins with different N-terminal domains. Biochem Biophys Res Commun 1994;200:769–76.PubMedCrossRefGoogle Scholar
  7. Delcroy E, Wouters S, Di Bello C, Lazure C, Ruysschert JM, Seidah NG. Identification of the paired basic convertases implicated in HIV gp 160 processing based onin vitroassays and expression in CD4+ cell lines. J Biol Chem 1996;271:30442–50.CrossRefGoogle Scholar
  8. Delcroy E, Benjannet S, Savaria D, Seidah NG. Comparative functional role of PC7 and furin in the processing of the HIV envelope glycoprotein gp 160. FEBS Lett 1997;405:68–72.CrossRefGoogle Scholar
  9. Delgado M, De la Fuente M, Martinez C, Gomariz RP. Pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) inhibits the mobility of murine thymocytes and splenic lymphocytes: comparison with VIP and implication of cAMP. J Neuroimmunol 1995;62:137–46.PubMedCrossRefGoogle Scholar
  10. Delgado M, Martinez C, Leceta J, Garrido E, Gomariz RP. Differential VIP and VIP1receptor gene expression in rat thymocyte subsets. Peptides 1996a;17:803–7.CrossRefGoogle Scholar
  11. Delgado M, Pozo D, Martinez C, Garrido E, Leceta J, Calvo JR, Gomariz RP. Characterization of gene expression of VIP and VIP1-receptor in rat peritoneal lymphocytes and macrophages. Regul Pept 1996b;62:161–66.CrossRefGoogle Scholar
  12. Delgado M, Martinez C, Johnson MC, Gomariz RP, Ganea D. Differential expression of vasoactive intestinal peptide receptors 1 and 2 (VIP-RI and VIP-R2) mRNA in murine lymphocytes. J Neuroimmunol 1996c;68:27–38.CrossRefGoogle Scholar
  13. Delgado M, Garrido E, De la Fuente M, Gomariz RP. Pituitary adenylate cyclase-activating polypeptide (PACAP38) stimulates rat peritoneal macrophage functions. Peptides 1996d;17:1097–105.CrossRefGoogle Scholar
  14. Delgado M, Garrido E, Martinez C, Leceta J, Gomariz RP. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide (PACAP27 and PACAP38) protect CD4+CD8+ thymocytes from glucocorticoid-induced apoptosis. Blood 1996e;87:5152–61.Google Scholar
  15. Delgado M, Munoz-Elias EJ, Kan Y, Gozes I, Fridkin M, Brenneman DE, Gomariz RP, Ganea D. Vasoactive intestinal and pituitary adenylate cyclase-activating polypeptide inhibit TNFa transcriptional activation by regulating NF-kB and CREB/c-Jun. J Biol Chem 1998;273:31427–36.PubMedCrossRefGoogle Scholar
  16. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit IL-12 transcription by regulating NFkB and Ets activation. J Biol Chem 1999;274:3193040.Google Scholar
  17. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D. VIP and PACAP inhibit IL-12 production in LPS-stimulated macrophages. Subsequent effect on IFNy synthesis by T cells. J Neuroimmunol 1999a;96:167–81.CrossRefGoogle Scholar
  18. Delgado M, Pozo D, Martinez C, Leceta J, Calvo JR, Ganea D, Gomariz RP. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNFa production by macrophages:in vitroandin vivostudies. J Immunol 1999b;162:2358–67.Google Scholar
  19. Delgado M, Munoz-Elias EJ, Gomariz RP, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide enhance IL-10 production by murine macrophages:in vitroandin vivostudies. J Immunol 1999c;162:1707–16.Google Scholar
  20. Delgado M, Martinez C, Pozo D, Calvo JR, Leceta J, Ganea D, Gomariz RP. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) protect mice from lethal endotoxemia through the inhibition of TNFa and IL-6. J Immunol 1999d;162:1200–5.Google Scholar
  21. Delgado M, Leceta J, Abad C, Martinez C, Ganea D, Gomariz RP. Shedding of membrane-bound CD14 from lipopolysaccharide-stimulated macrophages by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. J Neuroimmunol 1999e;99:61–71.CrossRefGoogle Scholar
  22. Delgado M, Sun W, Leceta J, Ganea D. VIP and PACAP differentially regulate the costimulatory activity of resting and activated macrophages through the modulation of B7.1 and B7.2 expression. J Immunol 1999f;163:4213–23.Google Scholar
  23. Delgado M, Leceta J, Gomariz RP, Ganea D. VIP and PACAP stimulate the induction of Th2 responses by upregulating B7.2 expression. J Immunol 1999g;163:3629–35.Google Scholar
  24. Delgado M, Gomariz RP, Martinez C, Abad C, Leceta J. Antiinflammatory properties of the type 1 and type 2 vasoactive intestinal peptide receptors: role in lethal endotoxic shock. Eur J Immunol 2000;30:3236–46.PubMedCrossRefGoogle Scholar
  25. Delgado M, Ganea D. VIP and PACAP inhibit antigen-induced apoptosis of mature T lymphocytes by inhibiting FasL expression. J Immunol 2000a;164:1200–10.Google Scholar
  26. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit T cell-mediated cytotoxicity by inhibiting Fas ligand expression. J Immunol 2000b;165:114–23.Google Scholar
  27. Delgado M, Abad C, Martinez C, Leceta J, Gomariz RP. Vasoactive intestinal peptide prevents experimental arthritis by down-regulating both autoimmune and inflammatory components of the disease. Nat Med 2001;7:563–68.PubMedCrossRefGoogle Scholar
  28. Delgado M, Ganea D. Inhibition of endotoxin-induced macrophage chemokine production by VIP and PACAPin vitroandin vivo.J Immunol 2001a;167:966–75.Google Scholar
  29. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit expression of Fas ligand in activated T lymphocytes by regulating c-Myc, NFkB, NF-AT, and early growth factors 2/3. J Immunol 2001b;166:1028–40.Google Scholar
  30. Delgado M, Ganea D. VIP and PACAP inhibit Fas ligand-mediated bystander lysis by CD4+ T cells. J Neuroimmunol 2001c;112:78–88.CrossRefGoogle Scholar
  31. Delgado M, Ganea D. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide inhibit nuclar factor kappa-B-dependent gene activation at multiple levels in the human monocytic cell line THP-1. J Biol Chem 2001d;276:369–380.CrossRefGoogle Scholar
  32. Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Ann Rev Immunol 1996;14:397–440.CrossRefGoogle Scholar
  33. Garrido E, Delgado M, Martinez C, Gomariz RP, De la Fuente M. Pituitary adenylate cyclaseactivating polypeptide (PACAP38) modulates lymphocyte and macrophage functions: stimulation of adherence and opposite effect on mobility. Neuropeptides 1996;30:583–95.PubMedCrossRefGoogle Scholar
  34. Gaytan F, Martinez-Fuentes AJ, Gracia-Navarro F, Vaudry H, Aguilar E. Pituitary adenylate cyclase activating peptide (PACAP) immunolocalization in lymphoid tissue of rat. Cell Tissue Res 1994;276:233–37.CrossRefGoogle Scholar
  35. Gomariz RP, Lorenzo MJ, Cacicedo L, Vicente A, Zapata A. Demonstration of immunoreactive vasoactive intestinal peptide (IR-VIP) and somatostatin (IR-SOM) in rat thymus. Brain Behav Immun 1990;4:151–61.PubMedCrossRefGoogle Scholar
  36. Gomariz, RP, Garrido E, Leceta J, Martinez C, Abalo R, Delgado M. Gene expression of VIP receptor in rat lymphocytes. Biochem Biophys Res Commun 1994;203:1599–604.PubMedCrossRefGoogle Scholar
  37. Gomariz RP, Leceta J, Martinez C, Abad C, Ganea D, Delgado M. Anti-inflammatory actions of VIP/PACAP. Role in endotoxemia. Ann NY Acad Sci 2000;921:284–88.PubMedCrossRefGoogle Scholar
  38. Gomariz RP, Martinez C, Abad C, Leceta J, Delgado M. Immunology of VIP: a review and therapeutical perspectives. Cuff Pharm Des 2001;7:89–111.Google Scholar
  39. Guerrero JM, Prieto JC, Elorza FL, Ramirez R, Goberna R. Interaction of vasoactive intestinal peptide with human blood mononuclear cells. Mol Cell Endocrinol 1981;21:151–60.PubMedCrossRefGoogle Scholar
  40. Harmar AJ, Arimura A, Gozes I, Journot L, Laburthe M, Pisegna JR, Rawlings SR, Robberecht P, Said SI, Sreedharan SP, Wank SA, Waschek JA. International Union of Pharmacology. XVII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclaseactivating polypeptide. Pharmacol Rev 1998;50:265–70.PubMedGoogle Scholar
  41. Ichinose M, Asai M, Imai K, Sawada M. Enhancement of phagocytosis in mouse macrophages by pituitary adenylate cyclase-activating polypeptide (PACAP) and related peptides. Immunopharmacol 1995;30:217–24.CrossRefGoogle Scholar
  42. Ishihara T, Shigemoto R, Mori K, Takahashi K, Nagata S. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 1992;8:811–19.PubMedCrossRefGoogle Scholar
  43. Ju ST, Panka DJ, Cui H, Ettinger R, El-Khatib M, Sherr DH, Stanger BA, Marshak-Rothstein A. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 1995;373:444–48.PubMedCrossRefGoogle Scholar
  44. Kaltreider HB, Ichkawa S, Byrd PK, Ingram DA, Kishiyama JL, Sreedharan SP, Warnock ML, Beck J, Goetzl EG. Upregulation of neuropeptides and neuropeptide receptors in a murine model of immune inflammation in lung parenchyma. Am J Respir Cell Mol Biol 1997;16:133–44.PubMedGoogle Scholar
  45. Karima R, Matsumoto S, Higashi H, Matsushima K. The molecular pathogenesis of endotoxic shock and organ failure. Mol Med Today 1999;5:123–32.PubMedCrossRefGoogle Scholar
  46. Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation. Annu Rev Immunol 1996;14:233–58.PubMedCrossRefGoogle Scholar
  47. Martinez C, Delgado M, Pozo D, Leceta J, Calvo JR, Ganea D, Gomariz RP. Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide modulate endotoxin-induced IL6 production by murine peritoneal macrophages. J Leuk Biol 1998a;63:591–601.Google Scholar
  48. Martinez C, Delgado D, Pozo D, Leceta J, Calvo JR, Ganea D, Gomariz RP. VIP and PACAP enhance IL6 release and mRNA levels in resting peritoneal macrophages:in vitroandin vivostudies. J Neuroimmunol 1998b;85:155–67.CrossRefGoogle Scholar
  49. Martinez C, Delgado M, Abad C, Gomariz RP, Ganea D, Leceta J Regulation of VIP production and secretion by murine lymphocytes. J Neuroimmun 1999;93:126–28.CrossRefGoogle Scholar
  50. Mauri C, Williams RO, Walmsley M, Feldmann M. Relationship between Thl /Th2 cytokine patterns and the arthriogenic response in collagen-induced arthritis. Eur J Immunol 1996;26:1511–20.PubMedCrossRefGoogle Scholar
  51. O’Garra AO. Cytokines induce the development of functionally heterogenous T helper cell subsets. Immunity 1998;8:275–283.PubMedCrossRefGoogle Scholar
  52. Ottaway CA, Greenberg G. Interaction of vasoactive intestinal peptide with mouse lymphocytes: specific binding and the modulation of mitogen responses. J Immunol 1984;132:417–23.PubMedGoogle Scholar
  53. Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Joumot L. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclaseactivating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem 1996;271:22146–51.PubMedCrossRefGoogle Scholar
  54. Pozo D, Delgado M, Martinez C, Gomariz RP, Guerrero JM, Calvo JR. Functional characterization and mRNA expression of pituitary adenylate cyclase activating polypeptide (PACAP) type I receptors in rat peritoneal macrophages. Biochim Biophys Acta 1997;1359:250–62.PubMedCrossRefGoogle Scholar
  55. Robberecht P, De Neef P, Gourlet P, Cauvin A, Coy DH, Christophe J. Pharmacological characterization of the novel heloderminNIP receptor present in human SUP-T1 lymphoma. Regul Pept 1989;26:117–26.PubMedCrossRefGoogle Scholar
  56. Sakakibara H, Shima K, Said SI. Characterization of vasoactive intestinal peptide receptors on rat alveolar macrophages. Am J Physiol 1994;267:L256–62.PubMedGoogle Scholar
  57. Segura, JJ, Guerrero JM, Goberna R, Calvo JR. Characterization of functional receptors for vasoactive intestinal peptide (VIP) in rat peritoneal macrophages. Regul Pept 1991;33:133–43.PubMedCrossRefGoogle Scholar
  58. Seki N, Sudo Y, Yoshioka T, Sugihara S, Fujitsu T, Sakuma S, Ogawa T, Hamaoka T, Senoh H, Fujiwara H. Type II collagen-induced murine arthritis induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J Immunol 1988;140:1477–84.PubMedGoogle Scholar
  59. Smyth MJ. Fas ligand-mediated bystander lysis of syngeneic cells in response to an allogeneic stimulus. J Immunol 1997;158:5765–5772.PubMedGoogle Scholar
  60. Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L. Differential signal transduction by five splice variants of the PACAP receptor gene. Nature 1993;365:170–75.PubMedCrossRefGoogle Scholar
  61. Suda T, Okazaki T, Naito Y, Yokota T, Arai N, Ozaki S, Nakao K, Nagata S. Expression of the Fas ligand in cells of the T cell lineage. J Immunol 1995;154: 3806–13.PubMedGoogle Scholar
  62. Svoboda M, Tastenoy M, Ciccarelli E, Stievenart M, Cristophe J. Cloning of a splice variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor. Biochem Biophys Res Commun 1993;195:881–88.PubMedCrossRefGoogle Scholar
  63. Tang H, Sun L, Xin Z, Ganea D. Down-regulation of cytokine expression in murine lymphocytes by PACAP and VIP. Ann. NY Acad. Sci. 1996;805:768–78.PubMedCrossRefGoogle Scholar
  64. Taplits MS, Henkart PA, Hodes RJ. T helper cell cytoplasmic granules. Exocytosis in response to activation via the T cell receptor. J Immunol 1988;141:1–9.PubMedGoogle Scholar
  65. Tatsuno I, Gottschall PE, Arimura A. Inhibition of mitogen-stimulated proliferation of murine splencytes by a novel neuropeptide, pituitary adenylate cyclase-activating polypeptide: a comparative study with vasoactive intestinal peptide. Endocrinology 1991;128:728–34.PubMedCrossRefGoogle Scholar
  66. Vaudry D, Gonzalez BJ, Basille M, Jon L, Fournier A, Vaudry H. Pituitary adenylate cyclaseactivating polypeptide and its receptors: from structure to functions. Pharmacol Rev 2000;52:269–324.PubMedGoogle Scholar
  67. Vincent J, Chamlou R. Sepsis trials. Curr Opin Anaesthesiol 1996;9:146–56.CrossRefGoogle Scholar
  68. Wiik P, Opstad PK, Boyum A. Binding of vasoactive intestinal polypeptide (VIP) by human blood monocytes: demonstration of specific binding sites. Regul Pept 1985;12:145–63.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. Delgado
    • 1
  • J. Leceta
    • 1
  • R. P. Gomariz
    • 1
  1. 1.Dept. Biologia Celular, Facultad de BiologiaUniversidad ComplutenseMadridSpain

Personalised recommendations