Skip to main content

Advanced Modulation

  • Chapter
Digital Communication

Abstract

In Chapter 5 we described transmitter and receiver design using PAM. In this chapter we extend to other modulation schemes. We begin by considering a general form of modulation called M-ary modulation, in which one of M signals is transmitted every signaling interval. In this general setting, we present the correlation and projection receivers as practical means for implementing the minimum-distance receiver, and we present a union-bound approximation for the resulting probability of error in the presence of AWGN

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.W. Golomb, Digital Communications with Space Applications, Prentice Hall, N.J. (1964).

    MATH  Google Scholar 

  2. R. W. Lucky, J. Salz, and E. J. Weldon, Jr., Principles of Data Communication, McGraw-Hill Book Co., New York (1968).

    Google Scholar 

  3. R. W. Chang, “Synthesis of Band-Limited Orthogonal Signals for Multichannel Data Transmissions,” Bell System Technical Journal (Aug. 1966).

    Google Scholar 

  4. American National Standards Institute, “Network and customer installation interfaces — Asymmetrical digital subscriber line (ADSL) metallic interface,” ANSI Standard T1E1, pp. 413 1995, August 18, 1995.

    Google Scholar 

  5. B. Hirosaki, “An Orthogonal Multiplexed QAM System Using the Discrete Fourier Transform,” IEEE Transactions on Communications, pp. 982–989 (July 1981).

    Google Scholar 

  6. R. A. Scholtz, “The Origins of Spread-Spectrum Communications,” IEEE Trans. Communications, Vol. COM-30 (5), p. 822 (May 1982).

    Article  MathSciNet  Google Scholar 

  7. R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of Spread-Spectrum Communications — A Tutorial,” IEEE Trans. Commun., Vol. COM-30 (5), p. 855 (May 1982).

    Article  Google Scholar 

  8. M. L. Doelz and E. H. Heald, “Minimum-Shift Data Communications Systems,” U. S. Patent No. 2,977,417, (March 28, 1961).

    Google Scholar 

  9. T. Aulin, N. Rydbeck, and C.-E. W. Sundberg, “Continuous Phase Modulation - Part II: Partial Response Signaling,” IEEE Trans, on Communications, Vol. COM-29 (3), (March 1981).

    Google Scholar 

  10. H. J. Landau and H. O. Pollak, “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty, III: The Dimension of the Space of Essentially Time- and Band-Limited Signals,” Bell System Technical Journal, Vol. 41, p. 1295 (1962).

    MathSciNet  MATH  Google Scholar 

  11. C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, University of Illinois Press, Urbana, Illinois (1963).

    MATH  Google Scholar 

  12. C. E. Shannon, “Communication in the Presence of Noise,” Proc. IRE, Vol. 37, pp. 10–21 (January 1949).

    Article  MathSciNet  Google Scholar 

  13. G. D. Forney, Jr and M. V. Eyuboglu, “Combined Equalization and Coding Using Precoding,” IEEE Communications Magazine, (Dec. 1991).

    Google Scholar 

  14. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York (1965).

    Google Scholar 

  15. J. G. Proakis, Digital Communications, Fourth Edition, McGraw-Hill Book Co., New York (2001).

    Google Scholar 

  16. G. R. Cooper and C. D. McGillem, Modern Communications and Spread Spectrum, McGraw-Hill Book Co., New York (1986).

    Google Scholar 

  17. R. E. Ziemer and R. L. Peterson, Digital Communications and Spread Spectrum Systems, Macmillan, New York (1985).

    Google Scholar 

  18. C. E. Cook and H. S. Marsh, “An Introduction to Spread Spectrum,” IEEE Communications Magazine, p.8, (March 1983).

    Google Scholar 

  19. S. Pasupathy, “Minimum Shift Keying: A Spectrally Efficient Modulation,” IEEE Communications Magazine, Vol. 17, No. 4 (July 1979).

    Google Scholar 

  20. S. Haykin, Communications Systems, Second Edition, John Wiley & Sons, Inc. (1983).

    Google Scholar 

  21. S. Gronemeyer and A. McBride, “MSK and Offset QPSK Modulation,” IEEE Transactions on Communications, Vol. 24, No. 8 (Aug. 1976).

    Google Scholar 

  22. D. H. Morais and K. Feher, “Bandwidth Efficiency and Probability of Error Performance of MSK and Offset QPSK Systems,” IEEE Transactions on Comm., Vol. 27, No. 12 (Dec. 1979).

    Google Scholar 

  23. J. B. Anderson, T. Aulin, and C.-E. Sundberg, Digital Phase Modulation, Plenum, New York, NY, 1986.

    Google Scholar 

  24. M. K. Simon, S. M. Hinedi, and W. C. Lindsey, Digital Communication Techniques, Prentice Hall, Englewood Cliffs, New Jersey, 1995.

    Google Scholar 

  25. B. R. Saltzberg, “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communications, Vol. 15, pp. 805–811 (Dec. 1967).

    Article  Google Scholar 

  26. E. Powers and M. Zimmerman, “TADIM — A Digital Implementation of a Multichannel Data Modem,” Proceedings of ICC (1968).

    Google Scholar 

  27. S. Darlington, “On Digital Single-Sideband Modulators,” IEEE Transactions on Circuit Theory, Vol 17, pp. 409–414 (Aug. 1970).

    Article  Google Scholar 

  28. S. B. Weinstein and P. M. Ebert, “Data Transmission by Frequency Division Multiplexing Using the Discrete Fourier Transform,” IEEE Trans. Communications, Vol. 19, No. 5 (Oct. 1971).

    Google Scholar 

  29. I. Kalet, “The Multitone Channel,” IEEE Trans. Communications, Vol 37, No. 2, pp. 119–124 (Feb. 1989).

    Article  Google Scholar 

  30. A. Ruiz, J. Cioffi, and S. Kasturia, “Discrete Multiple Tone Modulation with Coset Coding for the Spectrally Shaped Channel,” IEEE Trans. Comm., Vol. 40, No. 6, pp. 1012–1029, June 1992.

    Article  MATH  Google Scholar 

  31. J. A. C. Bingham, “Multicarrier Modulation for Data Transmission: An Idea Whose Time Has Come,” IEEE Communications Magazine, pp. 5–14 (May 1990).

    Google Scholar 

  32. J. W. Lechleider, “The Optimum Combination of Block Codes and Receivers for Arbitrary Channels,” IEEE Transactions on Communications, Vol. 38, No. 5 (May 1990).

    Google Scholar 

  33. S. Kasturia, J. T. Aslanis, and J. M. Cioffi, “Vector Coding for Partial Response Channels,” IEEE Transactions on Information Theory, Vol. 36, No. 4, pp. 741–762 (July 1990).

    Article  MathSciNet  Google Scholar 

  34. E. Feig, “Practical Aspects of DFT-Based Frequency Division Multiplexing for Data Transmission,” IEEE Transactions on Communications, Vol. 38, No. 7, pp. 929–932 (July 1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barry, J.R., Lee, E.A., Messerschmitt, D.G. (2004). Advanced Modulation. In: Digital Communication. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0227-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0227-2_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4975-4

  • Online ISBN: 978-1-4615-0227-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics