Advertisement

Pulse-Amplitude Modulation

  • John R. Barry
  • Edward A. Lee
  • David G. Messerschmitt

Abstract

An information-bearing signal must conform to the limitations of its channel. While the bit streams we wish to transmit are inherently discrete-time, all physical media are continuous-time in nature. Hence, we need to represent the bit stream as a continuous-time signal for transmission, a process called modulation

Keywords

Pulse Shape Spectral Efficiency Matched Filter Data Symbol Viterbi Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Noguchi, Y. Daido, and J. Nossek, “Modulation Techniques for Microwave Digital Radio,” IEEE Communications Magazine, Vol. 24, no. 10, p. 21, Oct. 1986.CrossRefGoogle Scholar
  2. 2.
    D. Taylor and P. Hartmann, “Telecommunications by Microwave Digital Radio,” IEEE Communications Magazine, Vol.24, no. 8, p. 11, Aug. 1986.CrossRefGoogle Scholar
  3. 3.
    J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, Wiley, New York 1965.Google Scholar
  4. 4.
    C. R. Cahn, “Combined Digital Phase and Amplitude Modulation Communication Systems,” IRE Transactions on Communications Systems, Vol. CS-8, pp. 150–154, 1960.CrossRefGoogle Scholar
  5. 5.
    J. C. Hancock and R. W. Lucky, “Performance of Combined Amplitude and Phase-Modulated Communication Systems,” IRE Trans. Communications Systems, Vol. CS-8, pp. 232–237,1960.CrossRefGoogle Scholar
  6. 6.
    C. N. Campopiano and B. G. Glazer, “A Coherent Digital Amplitude and Phase Modulation Scheme,” IRE Transactions on Communications Systems, Vol. CS-10, pp. 90–95, 1962.CrossRefGoogle Scholar
  7. 7.
    R. W. Lucky and J. C. Hancock, “On the Optimum Performance of N-ary Systems Having Two Degrees of Freedom,” IRE Trans. Communications Systems, Vol. CS-10, pp. 185–192, 1962.CrossRefGoogle Scholar
  8. 8.
    R. W. Lucky, Digital Phase and Amplitude Modulated Communications Systems, Purdue University, Lafayette, IN, 1961.Google Scholar
  9. 9.
    G. J. Foschini, R. D. Gitlin, and S. B. Weinstein, “Optimization of Two-Dimensional Signal Constellations in the Presence of Gaussian Noise,” IEEE Trans. Comm., Vol. 22, no. 1, Jan. 1974.Google Scholar
  10. 10.
    G. D. Forney, Jr., R. G. Gallager, G. Lang, F. M. Longstaff, S. U. Qureshi, “Efficient Modulation for Band-Limited Channels,” IEEE J. Selected Areas Comm., Vol. 2, No. 5 Sep. 1984.Google Scholar
  11. 11.
    A. Gersho and V. B. Lawrence, “Multidimensional Signal Constellations for Voiceband Data Transmission,” IEEE Journal on Selected Areas in Communications, Vol. 2, no. 5, Sep. 1984.Google Scholar
  12. 12.
    I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products, Academic Press, 1980.MATHGoogle Scholar
  13. 13.
    I. Korn, Digital Communications, Van Nostrand Reinhold, New York, 1985.MATHCrossRefGoogle Scholar
  14. 14.
    A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm,” IEEE Trans, on Information Theory, Vol. IT-13, pp. 260–269, April 1967.MATHCrossRefGoogle Scholar
  15. 15.
    G. D. Forney, Jr., “Maximum-Likelihood Sequence Estimation of Digital Sequences in the Presence of Intersymbol Interference,” IEEE Trans Info. Theory, Vol. 18, pp. 363–378 May 1972.MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    G. D. Forney, Jr., and G. Ungerboeck, “Modulation and Coding for Linear Gaussian Channels,” IEEE Transactions on Information Theory, Vol. 44, No. 6, pp. 2384–2415, October 1998.MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    A. J. Viterbi, “Convolutional Codes and their Performance in Communication Systems,” IEEE Trans, on Communication Tech., Vol. COM-19, pp. 751–772, Oct. 1971.MathSciNetCrossRefGoogle Scholar
  18. 18.
    G. D. Forney, Jr., “The Viterbi Algorithm,” Proceedings of the IEEE, Vol. 61 (3), March 1973.Google Scholar
  19. 19.
    J. K. Omura, “On the Viterbi Decoding Algorithm,” IEEE Trans, on Information Theory, Vol. IT-15, pp. 177–179,1969.MathSciNetCrossRefGoogle Scholar
  20. 20.
    R. E. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.MATHGoogle Scholar
  21. 21.
    A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, McGraw-Hill, 1979.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • John R. Barry
    • 1
  • Edward A. Lee
    • 2
  • David G. Messerschmitt
    • 2
  1. 1.Georgia Institute of TechnologyUSA
  2. 2.University of California at BerkeleyUSA

Personalised recommendations