Advertisement

Error Control

  • John R. Barry
  • Edward A. Lee
  • David G. Messerschmitt

Abstract

Error-control coding is the name given to the process of converting source bits into transmitted symbols so as to make possible reliable communications despite the presence of noise. As shown in Fig. 12–1, a channel coder precedes the mapping of bits to symbols at the transmitter. The channel coder constrains the symbol sequence a k so that only a strict subset of all possible symbol sequences can be transmitted. There is thus redundancy in the coded sequence, which can be exploited at the receiver to improve the robustness to noise

Keywords

Linear Code LDPC Code Turbo Code Convolutional Code Check Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Shamai (Shitz), L. H. Ozarow, and A. D. Wyner, “Information Rates for a Discrete-Time Gaussian Channel with Intersymbol Interference and Stationary Inputs,” IEEEE Transactions on Information Theory, Vol. 37, No. 6, pp. 1527–1539, November 1991.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D. J. Costello, Jr., J. Hagenauer, H. Imai, and S. B. Wicker, “Applications of Error-Control Coding,” IEEE Trans, on Information Theory, Vol. 44, No. 6, pp. 2531–2560, October 1998.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    T. J. Richardson, A. Shokrollahi, and R. Urbanke, “Design of Capacity-Approaching Low-Density Parity-Check Codes, IEEE Trans. Info. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    R. G. Gallager, “Low-Density Parity-Check Codes,” IRE Trans. Inform. Theory, vol. IT-8, pp. 21–28, January 1962.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding and Decoding: Turbo Codes,” IEEE Int. Conf. on Commun., Geneva, pp. 1064 1070, May 1993.Google Scholar
  6. 6.
    R. Gallager, Information Theory and Reliable Communication, Wiley, New York (1968).MATHGoogle Scholar
  7. 7.
    D. Chase, “A Class of Algorithms for Decoding Block Codes with Channel Measurement Information” IEEE Trans, on Information Theory, Vol. IT-18, pp. 170–182 (Jan. 1972).MathSciNetCrossRefGoogle Scholar
  8. 8.
    G. D. Forney, Jr., “Generalized Minimum Distance Decoding,” IEEE Trans, on Information Theory, Vol. IT-12, pp. 125–131 (April 1966).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Wainberg and J. K. Wolf, “Algebraic Decoding of Block Codes Over a g-ary Input, Q-ary Output Channel, Q > q,” Information and Control, Vol. 22, pp. 232–247, April 1973.MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    E. J. Weldon, Jr., “Decoding Binary Block Codes on Q-ary Output Channels,” IEEE Trans, on Information Theory, Vol. IT-17, pp. 713–718 (Nov. 1971).MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. K. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes Using a Trellis,” IEEE Trans, on Information Theory, Vol. IT-24, pp. 76–81 (Jan. 1978).CrossRefGoogle Scholar
  12. 12.
    J. G. Proakis, Digital Communications, Fourth Edition, McGraw-Hill, New York (2001).Google Scholar
  13. 13.
    W. Peterson and E. Weldon, Error-Correcting Codes, 2nd Ed., M.I.T. Press, Cambridge, Mass. (1972).MATHGoogle Scholar
  14. 14.
    R. G. Gallager, Low-Density Parity-Check Codes, MIT Press, Cambridge, MA, 1963.Google Scholar
  15. 15.
    D. J. C. MacKay and R. M. Neal, “Near Shannon-Limit Performance of Low-Density Parity-Check Codes,” Electronics Letters, vol. 32, pp. 1645–1646, Aug. 1996.CrossRefGoogle Scholar
  16. 16.
    S.-Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Urbanke, “On the Design of Low-Density Parity-Check Codes within 0.0045 dB of the Shannon Limit,” IEEE Commun. Letters, vol. 5, pp. 58–60, February 2001.CrossRefGoogle Scholar
  17. 17.
    C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, pp. 379–423 and 623–656, July/Oct. 1948.MathSciNetMATHGoogle Scholar
  18. 18.
    R. M. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Trans. Inform. Theory, vol. IT-27, pp. 533–547, September 1981.MathSciNetCrossRefGoogle Scholar
  19. 19.
    F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor Graphs and the Sum- Product Algorithm,” IEEE Trans. Information Theory, vol. 47, no. 2, pp. 498–519, February 2001.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes,” IEEE Trans. Information Theory, vol. 42, pp. 429–445, March 1996.MATHCrossRefGoogle Scholar
  21. 21.
    C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error- Correcting Coding and Decoding: Turbo Codes,” IEEE Intern. Conf. Commun., pp. 1064–70, Geneva, May 1993.Google Scholar
  22. 22.
    A. J. Blanksby and C.J. Howland, “A 690-mW 1-Gb/s 1024-bit, rate-1/2 Low-Density Parity-Check Code Decoder,” IEEE J. Solid-State Circuits, vol.37, No.3, pp. 404–12, March 2002.CrossRefGoogle Scholar
  23. 23.
    S.-Y Chung, R. Urbanke, and T. J. Richardson, “Gaussian Approximation for Sum-Product Decoding of Low-Density Parity-Check Codes,” in Proc. Int. Symp. Inform. Theory, page 318, Sorrento, Italy, June 2000.Google Scholar
  24. 24.
    S.-Y. Chung, “On the Construction of Some Capacity-Approaching Coding Schemes,” Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA, 2000.Google Scholar
  25. 25.
    S.-Y. Chung, T. J. Richardson, and R. Urbanke, “Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes using a Gaussian Approximation,” IEEE Trans. Information Theory, vol. 47, no. 2, pp. 657–670, February 2001.MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    H. El Gamal and A. R. Hammons, Jr., “Analyzing the Turbo Decoder using the Gaussian Approximation,” in Proc. Int. Symp. Inform. Theory, page 319, Sorrento, Italy, June 2000.Google Scholar
  27. 27.
    D. J. Costello Jr., P. C. Massey, O. M. Collins, and O. Y. Takeshita, “Some Reflections on the Mythology of Turbo Codes,” Proc. 3rd ITG Conference on Source and Channel Coding, Munich, Germany, pp. 157–160, January 2000.Google Scholar
  28. 28.
    S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some results on parallel concatenated coding schemes,” IEEE Trans. Inform. Theory, vol. 42, pp. 409 428, Mar. 1996.Google Scholar
  29. 29.
    G. D. Forney, Jr., Concatenated Codes. Cambridge, MA: MIT Press, 1966.Google Scholar
  30. 30.
    S. B. Wicker, V. K. Bhargava, Reed-Solomon Codes and their Applications, IEEE Press, 1994.MATHGoogle Scholar
  31. 31.
    G. D. Forney, Jr.and G. Ungerboeck, “Modulation and Coding for Linear Gaussian Channels,” IEEE Trans. Information Theory, Vol. 44, No. 6, pp. 238–2415, 1998.MathSciNetCrossRefGoogle Scholar
  32. 32.
    S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concatenation of interleaved codes: Performance analysis, design, and iterative decoding,” IEEE Trans. Inform. Theory, vol. 44, pp. 909–926, May 1998.MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    R. J. McEliece, “Achieving the Shannon Limit: a Progress Report,” Plenary Lecture, Allerton Conference on Communication, Control, and Computer, 2000.Google Scholar
  34. 34.
    H. Jin, A. Khandekar, and R. McEliece, “Irregular Repeat-Accumulate Codes,” Proceedings 2nd International Symposium on Turbo codes and Related Topics, Brest, France, pp. 1–8, Sept. 2000.Google Scholar
  35. 35.
    E. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Co., New York (1968).MATHGoogle Scholar
  36. 36.
    R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley, (1983).MATHGoogle Scholar
  37. 37.
    S. B. Wicker, Error Control Systems for Digital Communication and Storage, Prentice-Hall, (1995).MATHGoogle Scholar
  38. 38.
    F. J. MacWilliams and J. J. Sloane, The Theory of Error Correcting Codes, North-Holland, New York (1977).MATHGoogle Scholar
  39. 39.
    J. Massey, “Error Bounds for Tree Codes, Trellis Codes, and Convolutional Codes with Encoding and Decoding Procedures,” in Coding and Complexity, ed. G. Longo, Springer-Verlang, New York (1977).Google Scholar
  40. 40.
    R. J. McEliece, The Theory of Information and Coding, Addison Wesley Pub. Co. (1977).MATHGoogle Scholar
  41. 41.
    G. D. Forney, Jr., “Convolutional Codes I: Algebraic Structure,” IEEE Trans, on Information Theory, Vol. IT-16, pp. 720–738 (Nov. 1970).MathSciNetCrossRefGoogle Scholar
  42. 42.
    A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, McGraw-Hill (1979).MATHGoogle Scholar
  43. 43.
    S. G. Wilson, Digital Modulation and Coding, Prentice Hall, Upper Saddle River, NJ, 1996.Google Scholar
  44. 44.
    K. J. Larsen, “Short Convolutional Codes with Maximal Free Distance for Rates 1/2, 1/3 and 1/4,” IEEE Trans. Information Theory, Vol. IT-19, pp. 371–372 (1973).CrossRefGoogle Scholar
  45. 45.
    D. G. Daut, J. W. Modestino, and L. D. Wismer, “New Short Constraint Length Convolutional Code Construction for Selected Rational Rates,” IEEE Trans. Information Theory, Vol. IT-28, pp. 794–800(1982).CrossRefGoogle Scholar
  46. 46.
    C. L. Phillips and R. D. Harbor, Feedback Control Systems, Prentice-Hall (1988).Google Scholar
  47. 47.
    S. J. Mason, “Feedback Theory — Further Properties of Signal Flow Graphs,” Proc. IRE, Vol. 44 (7), p. 920 (July 1956).CrossRefGoogle Scholar
  48. 48.
    B. C. Kuo, Automatic Control Systems, Prentice-Hall, Englewood Cliffs, N.J. (1962).Google Scholar
  49. 49.
    M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, “Analysis of Low-Density Codes and Improved Designs using Irregular Graphs,” IEEE Trans. Info. Theory, Vol. 47, pp. 585–98, 2001.MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    T. Richardson and R. Urbanke, “The Capacity of Low-Density Parity-Check Codes Under Message-Passing Decoding,” IEEE Trans. Information Theory, Vol. 47, pp. 599–618, 2001.MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    T. Richardson and R. Urbanke, “Efficient Encoding of Low-Density Parity-Check Codes,” IEEE Trans. Information Theory, Vol. 47, pp. 638–656, 2001.MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Y. Kou, S. Lin, and M. Fossorier, “Low-Density Parity-Check Codes Based on Finite Geometries: A Rediscovery and New Results,” IEEE Trans. Information Theory, Vol. 47, No. 7, pp. 2711–2636, November 2001.MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    J. M. Tuchler, R. Hoetter, and A. C. Singer, “Turbo Equalization: Principles and New Results,” IEEE Trans. Communications, Vol. 50, No. 5, pp. 754–767, May 2002.CrossRefGoogle Scholar
  54. 54.
    D. Divsalar, H. Jin, and R. J. McEliece, “Coding Theorems for Turbo-Like Codes,” 36th Allerton Conf. on Communication, Control, and Computing, Allerton, Illinois, pp. 201–210, Sept. 1998.Google Scholar
  55. 55.
    W. Peterson and E. Weldon, Error-Correcting Codes, 2nd Ed., M.I.T. Press, Cambridge, Mass (1972).MATHGoogle Scholar
  56. 56.
    S. W. Golomb, Shift Register Sequences, Holden-Day, San Francisco (1967).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • John R. Barry
    • 1
  • Edward A. Lee
    • 2
  • David G. Messerschmitt
    • 2
  1. 1.Georgia Institute of TechnologyUSA
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations