Plant Cover: Ecological Implications and Methodical Approaches

  • Hansjörg Dietz
  • Thomas Steinlein


Plant or vegetation cover is usually regarded as the vertically projected area of all (living) aboveground plant parts as a percentage of the total ground area considered (i.e., intraspecific overlap is not taken into account). Plant cover also does not include belowgound plant parts. In this review, we use the term plant cover very broadly to include cover of mosses, lichens, algae, and cyanobacteria. In both ecological and economic contexts, plant or vegetation cover is widely used as a readily accessible parameter describing the dominance of certain plant species, plant life forms, or the degree of closure of the whole vegetation. In this respect, cover can be superior to density or productivity in different vegetation types, because density ignores size variability between individuals, and because it is difficult to determine individuals in clonal plant species. Furthermore, by using cover, it is possible to compare species of widely different growth forms (Daubenmire, 1968; Mueller-Dombois and Ellenberg, 1974). On the other hand, a major limitation of plant cover is that it represents a mostly three-dimensional structure in only two dimensions.


Vegetation Cover Normalize Difference Vegetation Index Aboveground Biomass Plant Cover Seed Predation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alagely, A. K., and Reeves, F. B. (1995). Inland sand dune mycorrhizae—effects of soil depth, moisture, and pH oncolonization of Oryzopsis hymenoides. Mycologia 87: 54–60.CrossRefGoogle Scholar
  2. Al Mufti, M. M., Sydes, C. L., Furness, S. B., Grime, J. P., and Band, S. R. (1977). A quantitative analysis of shootphenology and dominance in herbaceous vegetation. Journal of Ecology 65: 759–791.CrossRefGoogle Scholar
  3. Anderson, G. L., Hanson, J. D., and Haas, R. H. (1993). Evaluating Landsat Thematic Mapper derived vegetationindices for estimating above-ground biomass on semiarid rangelands. Remote Sensing of Environment 45:165–175.CrossRefGoogle Scholar
  4. Archibold, O. W. (1995). Ecology of world vegetation. London: Chapman & Hall.CrossRefGoogle Scholar
  5. Arnthórsdóttir, S. (1994). Colonization of experimental patches in a mown grassland. Oikos 70: 73–79.CrossRefGoogle Scholar
  6. Ayal, Y, and Merkl, O. (1994). Spatial and temporal distribution of tenebrionid species (Coleoptera) in the NegevHighlands, Israel. Journal of Arid Environments 27: 347–361.CrossRefGoogle Scholar
  7. Barton, A. M. (1994). Gradient analysis of relationships among fire, environment, and vegetation in a southwesternUSA mountain-range. Bulletin of the Torrey Botanical Club 121: 251–265.CrossRefGoogle Scholar
  8. Bazzaz, F. A. (1996). Plants in changing environments. Cambridge, UK: Cambridge University PressGoogle Scholar
  9. Bee, M. W., Wilson, J. B., and Mark, A. F. (1989). Stratification in a New Zealand rain forest. Vegetatio 79: 33–39.CrossRefGoogle Scholar
  10. .Berendse, F., Schmitz, M., and de Visser, W. (1994). Experimental manipulation of succession in heathlandecosystems. Oecologia 100: 38–44.CrossRefGoogle Scholar
  11. Bertness, M. D. (1991). Interspecific interactions among high marsh perennials in a New-England salt-marsh.Ecology 72: 125–137.CrossRefGoogle Scholar
  12. Bertness, M. D., and Callaway, R. (1994). Positive interactions in communities. Trends in Ecology and Evolution 9:191–193.PubMedCrossRefGoogle Scholar
  13. Betts, R. A., Cox, P. M., Lee, S. E., and Woodward, F. I. (1997). Contrasting physiological and structural vegetationfeedbacks in climate change simulations. Nature 387: 796–799.CrossRefGoogle Scholar
  14. Betts, R. A., Cox, P. M., and Woodward, F. I. (2000). Simulated responses of potential vegetation to doubled-C02climate change and feedbacks on near-surface temperature. Global Ecology and Biogeography 9: 171–180.CrossRefGoogle Scholar
  15. Birdsall, J. L., Quimby, P. C, Rees, N. E., Svejcar, T. J., and Sowell, B. F. (1997). Image analysis of leafy spurge(Euphorbia esula) cover. Weed Technology 11: 798–803.Google Scholar
  16. Bisson, I. A., and Stutchbury, B. J. M. (2000). Nesting success and nest-site selection by a neotropical migrant in afragmented landscape. Canadian Journal of Zoology 78: 858–863.CrossRefGoogle Scholar
  17. Booth, T. D. (1941). Algae as pioneers in plant succession and their importance in erosion control. Ecology 22: 38–46.CrossRefGoogle Scholar
  18. Borg, H., and Stoneman, G. L. (1991). Long-term implications for streamflow of changes in vegetation cover andstand height in regenerating karri stands in south-west western Australia. Forest Ecology and Management 40:65–73.CrossRefGoogle Scholar
  19. Borghi, C. E., Giannoni, S. M, and Martinezrica, J. P. (1994). Habitat segregation of 3 sympatric fossorial rodentsin the Spanish pyrenees. International Journal of Mammalian Biology 59: 52–57.Google Scholar
  20. Bounoua, L., Collatz, G. J., Los, S. O., Sellers, P. J., Dazlich, D. A., Tucker, C. J., and Randall, D. A. (2000).Sensitivity of climate to changes in NDVI. Journal of Climate 13: 2277–2292.CrossRefGoogle Scholar
  21. Brath, A., and Montanari, A. (2000). The effects of the spatial variability of soil infiltration capacity in distributedflood modelling. Hydrological Processes 14: 2779–2794.CrossRefGoogle Scholar
  22. Braun-Blanquet, J. (1928). Pflanzensoziologie—Grundzüge der Vegetationskunde (1st ed.). Berlin: Springer.Google Scholar
  23. Braun-Blanquet, J. (1964). Pflanzensoziologie (3rd ed.). Wien: Springer.CrossRefGoogle Scholar
  24. Brouwer, A., and Spaans, A. L. (1994). Egg predation in the herring gull Larus argentatus—Why does it vary somuch between nests? Ardea 82: 223–231.Google Scholar
  25. Brown, V. K. (1985). Insect herbivores and plant succession. Oikos 44: 17–22.CrossRefGoogle Scholar
  26. Bundrett, M. C., Ashwath, N., and Jasper, D. A. (1996). Mycorrhizas in the Kakadu region of tropical Australia: 2.Propagules of mycorrhizal fungi in disturbed habitats. Plant and Soil 184: 173–184.CrossRefGoogle Scholar
  27. Burrows, C. J. (1990). Processes of vegetation change. London: Unwin Hyman.Google Scholar
  28. Caldwell, M. M. (1987). Plant architecture and resource competition. In: E. D. Schulze and H. Zwölfer (Eds.),Potentials and limitations of ecosystem analysis (pp. 164–170). Berlin: Springer.CrossRefGoogle Scholar
  29. Callaway, R. M. (1992). Effect of shrubs on recruitment of Quercus douglasii and Quercus lobata in California.Ecology 73: 2118–2128.CrossRefGoogle Scholar
  30. Campbell, B. D., and Grime, J. P. (1992). An experimental test of plant strategy theory. Ecology 73: 15–29.CrossRefGoogle Scholar
  31. Castillo, G., and Demoulin, V. (1998). Phenology of lignicolous basidiomycetes from Laing Island (Papua NewGuinea). Belgian Journal of Botany 131: 237–243.Google Scholar
  32. Cerda, A. (1999). Parent material and vegetation affect soil erosion in eastern Spain. Soil Science Society ofAmerica Journal 63: 362–368.CrossRefGoogle Scholar
  33. Chew, R. M. (1995). Aspects of the ecology of 3 species of ants (Myrmecocystus spp, Aphaenogaster sp) indesertified grassland in southeastern Arizona, 1958–1993. American Midland Naturalist 134: 75–83.CrossRefGoogle Scholar
  34. Clark, C. A., and Arritt, R. W. (1995). Numerical simulations of the effect of soil-moisture and vegetation cover onthe development of deep convection. Journal of Applied Meteorology 34: 2029–2045.CrossRefGoogle Scholar
  35. Clymo, R. S. (1980). Preliminary survey of the peat-bog Hummell Knowe moss using various numerical methods.Vegetatio 42: 129–148.CrossRefGoogle Scholar
  36. Collison, A. J. C, Anderson, M. G., and Lloyd, D. M. (1995). Impact of vegetation on slope stability in a humidtropical environment—a modeling approach. Proceedings of the Institution of Civil Engineers-WaterMaritime and Energy 112: 168–175.CrossRefGoogle Scholar
  37. Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science 199: 1302–1310.PubMedCrossRefGoogle Scholar
  38. Crawley, M. J. (1987). What makes a community invasible? In: A. J. Gray, M. J. Crawley, and P. J. Edwards(Eds.), Colonization, succession and stability (pp. 429–454). Oxford, UK: Blackwell ScientificPublications.Google Scholar
  39. Crist, T. O., Guertin, D. S., Wiens, J. A., and Milne, B. T. (1992). Animal movement in heterogeneous landscapes—an experiment with Eleodes beetles in shortgrass prairie. Functional Ecology 6: 536–544.CrossRefGoogle Scholar
  40. Daubenmire, R. F. (1968). Plant communities: A textbook of plant synecology. New York: Harper and Row.Google Scholar
  41. Davis, R. M., and Cantlon, J. E. (1969). Effect of size area open to colonization on species composition in early old-field succession. Bulletin of the Torrey Botanical Club 96: 660–673.CrossRefGoogle Scholar
  42. Dean, W. R. J., and Milton, S. J. (1995). Plant and invertebrate assemblages on old fields in the arid southern Karoo,South Africa. African Journal of Ecology 33: 1–13.CrossRefGoogle Scholar
  43. Deplessis, A., and Kerley, G. I. H. (1991). Refuge strategies and habitat segregation in 2 sympatric rodents Otomysunisulcatus and Parotomys brantsii. Journal of Zoology 224: 1–10.CrossRefGoogle Scholar
  44. Dettmer, L. (2000). Biomassebestimmung mittels computergestützter Image-Analyse: Korrelationen an Standortenunterschiedlicher Ressourcenverfügbarkeit. Magister thesis, University of Bielefeld, Bielefeld, Germany.Google Scholar
  45. Diaz, J. A., and Carrascal, L. M. (1991). Regional distribution of a mediterranean lizard—influence of habitat cuesand prey abundance. Journal of Biogeography 18: 291–297.CrossRefGoogle Scholar
  46. Dietz, H., and Steinlein, T. (1996). Determination of plant species cover by means of image analysis. Journal ofVegetation Science 7: 131–136.CrossRefGoogle Scholar
  47. Dietz, H., and Steinlein, T. (1998). The impact of anthropogenic disturbance on life stage transitions and standregeneration of the invasive alien plant Bunias orientalis L. In: K. Edwards I. Kowarik U. Starfinger, M.Williamson (Eds.), Invasions: Ecological mechanisms and human responses (pp. 169–184). Leiden: Back-huys.Google Scholar
  48. Dietz, H., Steinlein, T., and Ullmann, I. (1999). Establishment of the invasive perennial herb Bunias orientalis L.:An experimental approach. Acta Oecologica 20: 621–632.CrossRefGoogle Scholar
  49. Dietz, H., and Ullmann, I. (1997). Phenological shifts of the alien colonizer B unias orientalis L.: An image-basedanalysis of temporal niche separation. Journal of Vegetation Science 8: 839–846.CrossRefGoogle Scholar
  50. Ehrenfeld, J. G. (1980). Understory response to gaps of varying size in a mature oak forest. Bulletin of the TorreyBotanical Club 107:29–41.CrossRefGoogle Scholar
  51. Eldridge, D. J. (1993 a). Cryptogam cover and soil surface condition—effects on hydrology on a semiarid woodlandsoil. Arid Soil Research and Rehabilitation 7: 203–217.CrossRefGoogle Scholar
  52. Eldridge, D. J. (1993b). Cryptogams, vascular plants, and soil hydrological relations—some preliminary resultsfrom the semiarid woodlands of eastern Australia. Great Basin Naturalist 53: 48–58.Google Scholar
  53. Epstein, H. E., Burke, I. C., and Mosier, A. R. (1998). Plant effects on spatial and temporal patterns of nitrogencycling in shortgrass steppe. Ecosystems 1: 374–385.CrossRefGoogle Scholar
  54. Everson, T. M., Clarke, G. P. Y., and Everson, C. S. (1990). Precision in monitoring plant species composition inmontane grasslands. Vegetatio 88: 135–141.CrossRefGoogle Scholar
  55. Fasola, M., and Canova, L. (1992). Nest habitat selection by 8 syntopic species of Mediterranean gulls and terns.Colonial Waterbirds 15: 169–178.CrossRefGoogle Scholar
  56. Flores, L. A., and Marinez, L. A. (2000). Land cover estimation in small areas using ground survey and remotesensing. Remote Sensing of Environment 74: 240–248CrossRefGoogle Scholar
  57. Fowler, N., and Antonovics, J. (1981). Competition and coexistence in a North Carolina grassland. Journal of Ecology 69: 825–841.CrossRefGoogle Scholar
  58. Frouz, J. (1997). The effect of vegetation patterns on oviposition habitat preference: A driving mechanism interrestrial chironomid (Diptera: Chironomidae) succession? Researches on Population Ecology 39: 207–213.CrossRefGoogle Scholar
  59. Gares, P. A. (1992). Topographic changes associated with coastal dune blowouts at Island Beach state park, NewJersey. Earth Surface Processes and Landforms 17: 589–604.CrossRefGoogle Scholar
  60. Gates, D. M. (1980). Biophysical ecology. Berlin: Springer.Givnish,T. J. (1982). On the adaptive significance ofleaf height in forest herbs. American Naturalist 120: 353–381.Google Scholar
  61. Goff, B. F., Bent, G. C, and Hart, G. E. (1993). Erosion response of a disturbed sagebrush steppe hillslope. Journalof Environmental Quality 22: 698–709.CrossRefGoogle Scholar
  62. Gold, W. G. (1998). The influence of cryptogamic crusts on the thermal environment and temperature relations ofplants in a high Arctic polar desert, Devon Island, NWT, Canada. Arctic and Alpine Research 30: 108–120.CrossRefGoogle Scholar
  63. Goldberg, D. E. (1990). Components of resource competition in plant communities. In: J. B. Grace and D. Tilman(Eds.), Perspectives in plant competition (pp. 21–49). New York: Academic Press.Google Scholar
  64. Goldberg, D. E., and Werner, P. A. (1983). The effects of size of opening in vegetation and litter cover on seedlingestablishment of goldenrods (Solidago spp.). Oecologia 60: 149–155.CrossRefGoogle Scholar
  65. Goodall, D. W. (1952). Some considerations in the use of point quadrats for the analysis of vegetation. AustralianJournal of Scientific Research Series B—Biological Research 5: 1–41.Google Scholar
  66. Goodall, D. W. (1953). Point quadrat methods for the analysis of vegetation. Australian Journal of Botany 1: 457–461.CrossRefGoogle Scholar
  67. Grace, J. B., and Pugesek, B. H. (1997). A structural equation model of plant species richness and its application tocoastal wetland. American Naturalist 149: 436–460.CrossRefGoogle Scholar
  68. Greipsson, S., and El Mayas, H. (1999). Large-scale reclamation of barren lands in Iceland by aerial seeding. Land Degradation and Development 10: 185–193.CrossRefGoogle Scholar
  69. Grime, J. B. (1987). Dominant and subordinate components of plant communities: Implications for succession,stability and diversity. In: A. J. Gray; M. J. Crawley, and P. J. Edwards (Eds.), Colonization, succession andstability (pp. 413–428). Oxford, UK: Blackwell Scientific.Google Scholar
  70. Gross, K. L. (1982). Colonizing abilities of biennial plant species in relation to ground cover: Implications for theirdistributions in a successional sere. Ecology 63: 921–931.CrossRefGoogle Scholar
  71. Grubb, P. J. (1977). The maintenance of species-richness in plant communities: The importance of the regenerationniche. Biological Review 52: 107–145.Google Scholar
  72. Grytnes, J. A. (2000). Fine-scale vascular plant species richness in different alpine vegetation types: Relationshipswith biomass and cover. Journal of Vegetation Science 11: 87–92.CrossRefGoogle Scholar
  73. Haigh, M., Rawat, J. S., Rawat, M. S., Bartarya, S. K., and Rai, S. P. (1995). Interactions between forest andlandslide activity along new highways in the Kumaun Himalaya. Forest Ecology and Management 78: 173–189.CrossRefGoogle Scholar
  74. Harper, J. L. (1977). Population biology of plants. London: Academic Press.Google Scholar
  75. Hedman, C. W., Grace, S. L., and King, S. E. (2000). Vegetation composition and structure of southern coastalplain pine forests: An ecological comparison. Forest Ecology and Management 134: 233–247.CrossRefGoogle Scholar
  76. Hirose, T., and Werger, M. J. A. (1995). Canopy structure and photon flux partitioning among species in aherbaceous plant community. Ecology 76: 466–474.CrossRefGoogle Scholar
  77. Hoffmann, W. A. (1996). The effects of fire and cover on seedling establishment in a neotropical savanna. Journalof Ecology 84: 383–393.CrossRefGoogle Scholar
  78. Hurka, H., and Winkler, S. (1973). Statistische Analyse der Rindenbewohnenden Flechtenvegetation einer AlleeTübingens. Flora 162: 61–80.Google Scholar
  79. Huston, M. (1979). A general hypothesis of species diversity. American Naturalist 113: 81–110.CrossRefGoogle Scholar
  80. Jensen, S. P., and Honess, P. (1995). The influence of moonlight on vegetation height preference and trappability ofsmall mammals. Mammalia 59: 35–42.CrossRefGoogle Scholar
  81. Jordan, P. W., and Nobel, P. S. (1979). Infrequent establishment of seedlings of Agave desertii (Agavaceae) in thenorthwestern Sonoran Desert. American Journal of Botany 66: 1079–1084.CrossRefGoogle Scholar
  82. Kasischke, E. S., Melack, J. M., and Dobson, M. C. (1997). The use of imaging radars for ecologicalapplications—a review. Remote Sensing of Environment 59: 141–156.CrossRefGoogle Scholar
  83. Keddy, P. A. (1989). Effects of competition from shrubs on herbaceous wetland plants: A 4-year field experiment.Canadian Journal of Botany 67: 708–716.CrossRefGoogle Scholar
  84. Keizer, P. J., van Tooren, B. F., and During, H. J. (1985). Effects of bryophytes on seedling emergence andestablishment of short-lived forbs in chalk grassland. Journal of Ecology 73: 493–504.CrossRefGoogle Scholar
  85. Kennedy, K. A., and Addison, P. A. (1987). Some considerations for the use of visual estimates of plant cover inbiomonitoring. Journal of Ecology 75: 152–157.Google Scholar
  86. Kent, M., and Coker, P. (1992). Vegetation description and analysis. Boca Raton, FL: CRC Press.Google Scholar
  87. Kerley, G. I. H. (1992). Ecological correlates of small mammal community structure in the semiarid Karoo, SouthAfrica. Journal of Zoology 227: 17–27.CrossRefGoogle Scholar
  88. Knapp, R. (ed.) (1984a). Handbook of vegetation science: IV. Sampling methods and taxon analysis in vegetationscience. The Hague: Dr. W. Junk Publishers.Google Scholar
  89. Knapp, R. (1984b). Sample (relevé) areas (distribution, homogeneity, size, shape) and plotless sampling. In: R.Knapp (Ed.), Handbook of vegetation science: IV. Sampling methods and taxon analysis in vegetation science(pp. 35–44). The Hague: Dr. W. Junk Publishers.Google Scholar
  90. Koller, D. (1990). Light-driven leaf movements. Plant, Cell and Environment 13: 615–632.CrossRefGoogle Scholar
  91. Kollmann, J., and Bassin, S. (2001). Effects of managment on seed predation in wildflower strips in northernSwitzerland. Agriculture, Ecosystems and Environment 83: 285–296.CrossRefGoogle Scholar
  92. Küchler, A. W., and Zonneveld, I. S. (1988). Floristic analysis of vegetation. In: A. W. Küchler and I. S. Zonneveld(Eds.), Vegetation mapping (pp. 51–66). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  93. Kustas, W. P., Prueger, J. H., Hatfield, J. L., Ramalingam, K., and Hipps, L. E. (2000). Variability in soil heat fluxfrom a mesquite dune site. Agricultural and Forest Meteorology 103: 249–264.CrossRefGoogle Scholar
  94. Kutiel, P. (1998). Possible role of biogenic crusts in plant succession on the Sharon sand dunes, Israel. Israel Journal of Plant Sciences 46: 279–286.Google Scholar
  95. Lancaster, N., and Baas, A. (1998). Influence of vegetation cover on sand transport by wind: Field studies at OwensLake, California. Earth Surface Processes and Landforms 23: 69–82.CrossRefGoogle Scholar
  96. Lawrence, R. L., and Ripple, W. J. (1998). Comparison among vegetation indices and bandwise regression in ahighly disturbed, heterogeneous landscape: Mount St. Helens, Washington. Remote Sensing of Environment64: 91–102.CrossRefGoogle Scholar
  97. Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology 73: 1943–1967.CrossRefGoogle Scholar
  98. Levy, E. E., and Madden, E. A. (1933). The point method of pasture analysis. New Zealand Journal of Agriculture46: 267–279.Google Scholar
  99. Leys, J. F. (1991). Towards a better model of the effect of prostrate vegetation cover on wind erosion. Vegetatio 91:49–58.CrossRefGoogle Scholar
  100. Loch, R. J. (2000). Using rainfall simulation to guide planning and management of rehabilitated areas: Part I.Experimental methods and results from a study at the Northparkes Mine, Australia. Land Degradation and Development 11: 221–240.CrossRefGoogle Scholar
  101. Londo, G. (1976). The decimal scale for relevés of permanent quadrats. Vegetatio 33: 61–64.CrossRefGoogle Scholar
  102. Londo, G. (1984). The decimal scale for relevés of permanent quadrats. In: R. Knapp (Ed.), Sampling methods andtaxon analysis in vegetation science (pp. 35–44). The Hague: Dr W. Junk Publishers.Google Scholar
  103. Longland, W. S. (1991). Risk of predation and food-consumption by black-tailed jackrabbits. Journal of Range Management 44: 447–450.CrossRefGoogle Scholar
  104. Lukesova, A., and Hoffmann, L. (1996). Soil algae from acid rain impacted forest areas of the Krusnehory Mts.: 1.Algal communities. Vegetatio 125: 123–136.CrossRefGoogle Scholar
  105. Manson, R. H., and Stiles, E. W. (1998). Links between microhabitat preferences and seed predation by smallmammals in old fields. Oikos 82: 37–50.CrossRefGoogle Scholar
  106. Martin, J., and Lopez, P. (1995). Influence of habitat structure on the escape tactics of the lizard Psammodromusalgirus. Canadian Journal of Zoology 73: 129–132.CrossRefGoogle Scholar
  107. McCarthy, D. P., and Zaniewski, K. (2001). Digital analysis of lichen cover: A technique for use in lichenometryand lichenology. Arctic, Antarctic and Alpine Research 33: 107–113.CrossRefGoogle Scholar
  108. Messier, C, Parent, S., and Bergeron, Y. (1998). Effects of overstory and understory vegetation on the understorylight environment in mixed boreal forests. Journal of Vegetation Science 9: 511–520.CrossRefGoogle Scholar
  109. Milton, S. J. (1995). Spatial and temporal patterns in the emergence and survival of seedlings in arid Karooshrubland. Journal of Applied Ecology 32: 145–156.CrossRefGoogle Scholar
  110. Mitchley, J. (1988). Control of relative abundance of perennials in chalk grassland in southern England: II. Verticalcanopy structure. Journal of Ecology 76: 341–350.CrossRefGoogle Scholar
  111. Molau, U., and Alatalo, J. M. (1998). Responses of subarctic-alpine plant communities to simulated environmentalchange: Biodiversity of bryophytes, lichens, and vascular plants. Ambio 27: 322–329.Google Scholar
  112. Molloy, J. M., and Moran, C. J. (1991). Compiling a field manual from overhead photographs for estimating cropresidue cover. Soil Use and Management 7: 177–183.CrossRefGoogle Scholar
  113. Moore, P. D., and Chapman, S. B. (1986). Methods in plant ecology Oxford, UK: Blackwell Scientific.Google Scholar
  114. Mueller-Dombois, D., and Ellenberg, H. (1974). Aims and methods of vegetation ecology. New York: Wiley.Google Scholar
  115. Negi, G. C. S., Rikhari, H. C., and Singh, S. P. (1992). Phenological features in relation to growth forms andbiomass accumulation in an alpine meadow of the central Himalaya. Vegetatio 101: 161–170.Google Scholar
  116. Okland, T., Okland, R. H., and Steinnes, E. (1999). Element concentrations in the boreal forest moss Hylocomiumsplendens: Variation related to gradients in vegetation and local environmental factors. Plant and Soil 209:71–83.CrossRefGoogle Scholar
  117. Pakarinen, P. (1984). Cover estimation and sampling of boreal vegetation in northern Europe. In: R. Knapp (Ed.),Handbook of vegetation science: IV Sampling methods and taxon analysis in vegetation science (pp. 35–44).The Hague: Dr W. Junk Publishers.Google Scholar
  118. Peart, D. R. (1989a). Species interactions in a successional grassland: I. Seed rain and seedling recruitment. Journalof Ecology 77: 236–251.CrossRefGoogle Scholar
  119. Peart, D. R. (1989b). Species interactions in a successional grassland: III. Effects of canopy gaps, gopher moundsand grazing on colonization. Journal of Ecology 77: 267–289.CrossRefGoogle Scholar
  120. Petranka, J. W., and McPherson J. K. (1979). The role of Rhus copallina in the dynamics of the forest-prairieecotone in north-central Oklahoma. Ecology 60: 956–965.CrossRefGoogle Scholar
  121. Pharo, E. J., and Vitt, D. H. (2000). Local variation in bryophyte and macro-lichen cover and diversity in montaneforests of western Canada. Bryologist 103: 455–466.CrossRefGoogle Scholar
  122. Pielke, R. A., Avissar, R., Raupach, M., Dolman, A. J., Zeng, X., and Denning, A. S. (1998). Interactions betweenthe atmosphere and terrestrial ecosystems: Influence on weather and climate. Global Change Biology 4: 461–475.CrossRefGoogle Scholar
  123. Pimentel, D., and Kounang, N. (1998). Ecology of soil erosion in ecosystems. Ecosystems 1: 416–426.CrossRefGoogle Scholar
  124. Prach, K., and Pysek, P. (1994). Clonal plants: What is their role in succession? Folia Geobotanica and Phytotaxonomica 29: 307–320.CrossRefGoogle Scholar
  125. Press, M. C, Potter, J. A., and Burke, M. J. W. (1998). Responses of a subarctic dwarf shrub heath community tosimulated environmental change. Journal of Ecology 86: 315–327.CrossRefGoogle Scholar
  126. Prosser, I. P., and Dietrich, W. E. (1995). Field experiments on erosion by overland-flow and their implication for adigital terrain model of channel initiation. Water Resources Research 31: 2867–2876.CrossRefGoogle Scholar
  127. Qin, W., and Gerstl, S. A. W. (2000). 3-D scene modeling of semidesert vegetation cover and its radiation regime.Remote Sensing of Environment 74: 145–162.CrossRefGoogle Scholar
  128. Rahman, M. H., and Khan, Y. A. (1995). Landslides and stability of coastal cliffs of Coxs Bazar area, Bangladesh.Natural Hazards 12: 101–118.CrossRefGoogle Scholar
  129. Ramirez, C. (1984). Einfluss der Jahreszeit auf Vegetations-Aufnahmen von Rasengesellschaften mit Thero- undGeophyten. In: R. Knapp (Ed.), Handbook of vegetation science: IV. Sampling methods and taxon analysis invegetation science (pp. 181–183). The Hague: Dr. W. Junk Publishers.Google Scholar
  130. Reader, R. J., and Best, B. J. (1989). Variation in competition along an environmental gradient: Hieraciumfloribundum in an abandoned pasture. Journal of Ecology 77: 673–684.CrossRefGoogle Scholar
  131. Reader, R. J., and Buck J. (1986). Topographic variation in the abundance of Hieracium floribundum: Relativeimportance of differential seed dispersal, seedling establishment, plant survival and reproduction. Journal of Ecology 74: 815–822.CrossRefGoogle Scholar
  132. Reader, R. J., Wilson, S. D., Belcher, J. W., Wisheu, I., Keddy, P. A., and Tilman, D. (1994). Plant competitionin relation to neighbor biomass: An intercontinental study with Poa pratensis. Ecology 75: 1753–1760.CrossRefGoogle Scholar
  133. Reich, R. M., Bonham, C. D., and Remingtojn, K. K. (1994). Comparison of classical vs inverse samplingfor estimating plant cover using Monte-Carlo simulations. Applied Mathematics and Computation 64:171–190.CrossRefGoogle Scholar
  134. Retana, J., and Cerda, X. (2000). Patterns of diversity and composition of Mediterranean ground ant communitiestracking spatial and temporal variability in the thermal environment. Oecologia 123: 436–444.CrossRefGoogle Scholar
  135. Robinson, C. H., Wookey, P. A., Lee, J. A., Callaghan, T. V, and Press, M. C. (1998). Plant community responses tosimulated environmental change at a high arctic polar semi-desert. Ecology 79: 856–866.CrossRefGoogle Scholar
  136. Rogers, R. W. (1995). Lichen succession on leaves of the rain-forest shrub, Capparis arborea (Capparaceae).Australian Journal of Botany 43: 387–396.CrossRefGoogle Scholar
  137. Röttgermann, M., Steinlein, T, Beyschlag, W., and Dietz, H. (2000). Linear relationships between abovegroundbiomass and plant cover in low open herbaceous vegetation. Journal of Vegetation Science 11: 145–148.CrossRefGoogle Scholar
  138. Roxburgh, S. H., Watkins, A. J., and Wilson, J. B. (1993). Lawns have vertical stratification. Journal of Vegetation Science 4: 699–704.CrossRefGoogle Scholar
  139. Rusek, J., and Marshall, V G. (2000). Impacts of airborne pollutants on soil fauna. Annual Review of Ecology and Systemation 31: 395–423.CrossRefGoogle Scholar
  140. Scanlan, J. C, Grant, W. E., Hunter, D. M., and Milner, R. J. (2001). Habitat and environmental factors influencingthe control of migratory locusts (Locusta migratoria) with an entomopathogenic fungus (Metarhiziumanisopliae). Ecological Modelling 136: 223–236.CrossRefGoogle Scholar
  141. Schiavon, M., Portal, J. M., and Andreux, F. (1992). The movement of atrazine in the environment. Agronomie 12:129–139.CrossRefGoogle Scholar
  142. Schlaepfer F. (1997). Influence of management on cover and seed production of Brachypodium pinnatum (L.)Beauv. in a calcareous grassland. Bulletin of the Geobotanical Institute ETH 63: 3–10.Google Scholar
  143. Schreiner, M., Bauer, E.-M., and Kollmann, J. (2000). Reducing predation of conifer seeds by clear-cutting Rubusfruticosus agg. in two montane forest stands. Forest Ecology and Management 126: 281–290.CrossRefGoogle Scholar
  144. Seastedt, T. R. (1985). Canopy interception of nitrogen in bulk Porecipitation by annually burned and unburnedtallgrass prairie. Oecologia 66: 88–92.CrossRefGoogle Scholar
  145. Seymour, C. L., and Dean, W. R. J. (1999). Effects of heavy grazing on invertebrate assemblages in the succulentKaroo, South Africa. Journal of Arid Environments 43: 267–286.CrossRefGoogle Scholar
  146. Silander, J. A., and Antonovics, J. (1982). Analysis of interspecific interactions in a coastal plant community—aperturbation approach. Nature 298: 557–560.CrossRefGoogle Scholar
  147. Smith, A. P. (1973). Stratification of temperate and tropical forests. American Naturalist 107: 671–683.CrossRefGoogle Scholar
  148. Spanner, M. A., Pierce, L. L., Peterson, D. L., and Running, S. W (1990). Remote sensing temperate coniferousforest leaf area index: The influence of canopy closure, understory and background reflectance. International Journal of Remote Sensing 11: 95–111.CrossRefGoogle Scholar
  149. Stampfli, A. (1991). Accurate determination of vegetational change in meadows by successive point quadratanalysis. Vegetatio 39: 97–114.Google Scholar
  150. Sternberg, M., Gutman, M., Perevolotsky, A., Ungar, E. D., and Kigel, J. (2000). Vegetation response to grazingmanagement in a Mediterranean herbaceous community: A functional group approach. Journal of Applied Ecology 37: 224–237.CrossRefGoogle Scholar
  151. Stone, D. A., Lancashire, R. A., Sutherland, K. B., Niendorf, R. B., and Sampson, R. B. (1988). A low costmicrocomputer-based image analysis system for the measurement of percent ground cover. Research and Development in Agriculture 5: 65–70.Google Scholar
  152. Sykes, J. M., Horrill, A. D., and Mountford, M. D. (1983). Use of visual cover assessments as quantitativeestimators of some British woodland taxa. Journal of Ecology 71: 437–450.CrossRefGoogle Scholar
  153. Thomas, D. L., da Silva, F. J., and Cromer, W. A. (1988). Image processing techniques for plant canopy coverevaluation. Transactions of the ASAE 31: 428–434.Google Scholar
  154. Turkington, R., and Klein, E. (1993). Interactive effects of nutrients and disturbance: An experimental test of plantstrategy theory. Ecology 74: 863–878.CrossRefGoogle Scholar
  155. Ullmann, I., and Büdel, B. (2001). Biological soil crusts of Africa. In: J. Belnap and O. L. Lange (Eds), Biologicalsoil crusts: Structure, function and management: Ecological studies (Vol. 150, pp. 107–118). Berlin:Springer.Google Scholar
  156. van der Maarel, E. (1979). Transformation of cover-abundance values in phytosociology and its effects oncommunity similarity. Vegetatio 39: 97–114.CrossRefGoogle Scholar
  157. van Tooren, B. F. (1988). The fate of seeds after dispersal in chalk grassland: The role of the bryophyte layer. Oikos 53: 41–48.CrossRefGoogle Scholar
  158. Vanha-Majamaa, I., Salemaa, M., Tuominen, S., and Mikkola, K. (2000). Digitized photographs in vegetationanalysis—a comparison of cover estimates. Journal of Vegetation Science 3: 89–94.CrossRefGoogle Scholar
  159. Veste, M., Littmann, T., Schultz, A., Eggert, K., Sommer, C., and Breckle, S.-W. (2000). Biomasseverteilung undderen räumliche Modellierung in Sanddünen der Negev-Wüste (Israel). Verhandlungen der Gesellschaft für Ökologie 30: 85.Google Scholar
  160. Vinton, M. A., and Burke, I. C. (1995). Interactions between individual plant species and soil nutrient status inshortgrass steppe. Ecology 76: 1116–1133.CrossRefGoogle Scholar
  161. Waring, R. H., Way, J. B., and Hunt, E. R., Jr. (1995). Imaging radar for ecosystem studies. Bioscience 45: 715–723.CrossRefGoogle Scholar
  162. Werger, M. J. A., and Hirose, T. (1988). Effects of light climate and nitrogen partitioning on the canopy structure ofstands of a dicotyledonous, herbaceous vegetation. In: M. J. A. Werger, R J. M. van der Aart, H. J. During andJ. T. A. Verhoeven (Eds.), Plant form and vegetation structure (pp. 171–181). The Hague: SPB Academic.Google Scholar
  163. Wiggs, G. F. S., Thomas, D. S. G., and Bullard, J. E. (1995). Dune mobility and vegetation cover in the southwestKalahari Desert. Earth Surface Processes and Landforms 20: 515–529.CrossRefGoogle Scholar
  164. Wildi, O. (1986). Analyse vegetationskundlicher Daten: Theorie und Einsatz statistischer Methoden. Veröffentli-chugen des Geobotanische Instituts Eidgenüssiche Technische Hochschule Stiftung Rübel, Zürich. 90.Google Scholar
  165. Wimbush, D. J., Barrow, M. D., and Costin A. B. (1967). Color stereography for the measurement of vegetation.Ecology 48: 150–152.CrossRefGoogle Scholar
  166. Winn, A. (1985). Effects of seed size and microsite on seedling emergence of Prunella vulgaris in four habitats.Journal of Ecology 73: 831–840.CrossRefGoogle Scholar
  167. Wirth, V, and Brinckmann, B. (1977). Statistical analysis of the lichen vegetation of an avenue in Freiburg (south-west Germany), with regard to injurious anthropogenous influences. Oecologia 28: 87–101.Google Scholar
  168. Yoder, B. J., and Waring, R. H. (1994). The normalized difference vegetation index of small Douglas-fir canopieswith varying chlorophyll concentrations. Remote Sensing of Environment 49: 81–91.CrossRefGoogle Scholar
  169. Zamfir, M. (2000). Effects of bryophytes and lichens on seedling emergence of alvar plants: Evidence fromgreenhouse experiments. Oikos 88: 603–611.CrossRefGoogle Scholar

Copyright information

© Springer-Science+Business Media New York 2002

Authors and Affiliations

  • Hansjörg Dietz
    • 1
  • Thomas Steinlein
    • 2
  1. 1.Geobotanisches Institut ETHEidgenössische Technische Hochschule ZürichZürichSwitzerland
  2. 2.Lehrstuhl für Experimentelle Ökologie und ÖkosystembiologieUniversität Bielefeld W4-107BielefeldGermany

Personalised recommendations