Advertisement

Stress Responses in Cyanobacteria

  • Rajeshwar P. Sinha

Abstract

Cyanobacteria (blue-green algae) are phylogenetically a primitive group of Gram-negative prokaryotes, being the only bacteria to possess higher plant-type oxygenic photosynthesis. Fossil evidence dates their appearance to the Precambrian era (between 2.8 and 3.5 × 109 years ago). At that time, they were probably the main primary producers of organic matter and the first organisms to release oxygen into the then- oxygen-free atmosphere. Thus cyanobacteria were responsible for a major global evolutionary transformation leading to the development of aerobic metabolism and the subsequent rise of higher plant and animal forms (Walter et al., 1992; Schopf, 1993; Pace, 1997). As a group, cyanobacteria are thought to have survived a wide spectrum of environmental stresses, such as heat, cold, drought, salinity, nitrogen starvation, photooxidation, anaerobiosis, and osmotic and ultraviolet radiation stress (Fay, 1992; Tandeau de Marsac & Houmard, 1993; Sinha and Häder 1996a). The cosmopolitan distribution of cyanobacteria, ranging from hot springs to Antarctic and Arctic regions; their colonization of oceans, lakes, rivers, and various soils; and their presence as symbiotic organisms in fungi and plants demand high variability in adapting to diverse environmental factors.

Keywords

Nucleotide Excision Repair Rice Paddy Field Anoxygenic Photosynthesis Linker Polypeptide Terrestrial Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aboussekhra, A., & Thoma, F. (1999). TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box. The EMBO Journal, 18, 433–443.PubMedGoogle Scholar
  2. Ballinger, D. G., & Pardue, M. I. (1982). The subcellular compartmentalization of mRNA in heat shocked Drosophila cells. In: M. J. Schlesinger, M. Ashburner, & A. Tissieres (Eds.), Heat shock from bacteria to man. (pp. 183–190). Painview, NY: Cold Spring Harbor Laboratory.Google Scholar
  3. Bebout, B. M., & Garcia-Pichel, F. (1995). UV-B induced vertical migrations of cyanobacteria in a microbial mat. Applied and Environmental Microbiology, 61, 4215–4222.PubMedGoogle Scholar
  4. Becker, M. M., & Wang, Z. (1989). Origin of ultraviolet damage in DNA. Journal of Molecular Biology, 210,429–438.PubMedGoogle Scholar
  5. Belkin, S., & Padan, E. (1978). Hydrogen metabolism in the facultative anoxygenic cyanobacteria (blue-green algae). Oscillatoria limnetica and Aphanothece halophytica. Archives of Microbiology, 116, 109–111.PubMedGoogle Scholar
  6. Bhagwat, A. A., & Apte, S. K. (1989). Comparative analysis of proteins induced by heat shock, salinity and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. Journal of Bacteriology, 171, 5187–5189.PubMedGoogle Scholar
  7. Blakefield, M. K., & Harris, D. O. (1994). Delay of cell differentiation in Anabaena aqualis caused by UV-B radiation and the role of photoreactivation and excision repair. Photochemistry and Photobiology, 59, 204–208.PubMedGoogle Scholar
  8. Blumthaler, M., & Ambach, W. (1990). Indication of increasing solar ultraviolet-B radiation flux in alpine regions. Science, 248, 206–208.PubMedGoogle Scholar
  9. Blunier, T., & Brook, E. J. (2001). Timing of millennial-scale climate change in Antarctica and greenland during the last glacial period. Science, 291, 109–112.PubMedGoogle Scholar
  10. Böhm, G. A., Pfleiderer, W., Böger, P., & Scherer, S. (1995). Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. Journal of Biological Chemistry, 270, 8536–8539.PubMedGoogle Scholar
  11. Borbély, G., & Surányi, G. (1988). Cyanobacterial heat-shock proteins and stress responses. Methods in Enzymology, 167, 622–627.Google Scholar
  12. Borbély, G., Surányi, G., Korez, A., & Palfi, Z. (1985). Effect of heat shock on protein synthesis in cyanobacterium Synechococcus sp. strain PCC 6301. Journal of Bacteriology, 161, 1125–1130.PubMedGoogle Scholar
  13. Brenowitz, S., & Castenholz, R. W. (1997). Long-term effects of UV and visible irradiance on natural populations of a scytonemin-containing cyanobacterium (Calothrix sp.). FEMS Microbiology Ecology, 24, 343–352.Google Scholar
  14. Britt, A. B. (1995). Repair of DNA damage induced by ultraviolet radiation. Plant Physiology, 108, 891–896.PubMedGoogle Scholar
  15. Burton, G. W., & Ingold, K. U (1984). ß-Carotene: An unusual type of lipid antioxidant. Science, 224, 569–573.PubMedGoogle Scholar
  16. Castenholz, R. W. (1997). Multiple strategies for UV tolerance in cyanobacteria. Spectrum, 10, 10–16.Google Scholar
  17. Christopher, D. A., & Mullet, J. E. (1994). Separate photosensory pathways co-regulate blue light/ultraviolet-Aactivated psbD-psbC transcription and light induced D2 and CP43 degradation in barley (Hordeum vulgare). chloroplasts. Plant Physiology, 104, 1119–1129.PubMedGoogle Scholar
  18. Cockell, C. S., & Knowland, J. (1999). Ultraviolet radiation screening compounds. Biological Review 74, 311–345.Google Scholar
  19. Cohen, Y., Jorgensen, B. B., Padan, E. & Shilo, M. (1975). Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature, 257, 489–492.Google Scholar
  20. Crutzen, P. J. (1992). Ultraviolet on the increase. Nature, 356, 104–105.Google Scholar
  21. de Chazal, N. M., & Smith, G. D. (1994). Characterization of a brown Nostoc sp. from Java that is resistant to high light intensity and UV. Microbiology, 140, 3183–3189.Google Scholar
  22. Donkor, V., Amewowor, D. H. A. K., & Häder, D.-P. (1993). Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiology Ecology, 12, 143–148.Google Scholar
  23. Donkor, V., & Häder, D.-P. (1991). Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria. FEMS Microbiology Ecology, 86, 159–168.Google Scholar
  24. Dunlap, W. C., & Shick, J. M. (1998). Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: A biochemical and environmental perspective. Journal of Phycology, 34, 418–430.Google Scholar
  25. Dunlap, W. C., & Yamamoto, Y. (1995). Small-molecule antioxidants in marine organisms, antioxidant activity of mycosporine-glycine. Comparative Biochemistry and Physiology, 112, 105–114.Google Scholar
  26. Ehling-Schulz, M., Bilger, W., & Scherer, S. (1997). UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology, 179, 1940–1945.PubMedGoogle Scholar
  27. Elkins, J. W., Thompson, T. ML, Swanson, T. H., Butler, J. H., Hall, B. D., Cummings, S. O., Fisher, D. A., & Raffo, A. G. (1993). Decrease in the growth rates of atmospheric chlorofluorocarbons 11 and 12. Nature, 364, 780–783.Google Scholar
  28. Erdmann, N., Fulda, S., & Hagemann, M. (1992). Glycosylglycerol accumulation during salt acclimation of two unicellular cyanobacteria. Journal of General Microbiology, 138, 363–368.Google Scholar
  29. Fay, P. (1992). Oxygen relations of nitrogen fixation in cyanobacteria. Microbiological Reviews, 56, 340–373.PubMedGoogle Scholar
  30. Friedberg, D., Fine, M., & Oren, A. (1979). Effect of oxygen on the cyanobacterium Oscillatoria limnetica. Archives of Microbiology, 123, 311–313.Google Scholar
  31. Friedberg, E. C., Walker, G. C, & Siede, W. (1995). DNA repair and mutagenesis. Washington, DC: ASM Press.Google Scholar
  32. Garcia-Pichel, F., & Castenholz, R. W. (1991). Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. Journal of Phycology, 27, 395–409.Google Scholar
  33. Garcia-Pichel, F., Kühl, M., Nübel, U., & Muyzer, G. (1999). Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats. Journal of Phycology, 35, 227–238.Google Scholar
  34. Garcia-Pichel, F., Sherry, N. D., & Castenholz, R. W. (1992). Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochemistry and Photobiology, 56, 17–23.PubMedGoogle Scholar
  35. Garcia-Pichel, F., Wingard, C. E., & Castenholz, R. W. (1993). Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Applied and Environmental Microbiology, 59, 170–176.PubMedGoogle Scholar
  36. Gröniger, A., Sinha, R. P., Klisch, M., & Häder, D.-P. (2000). Photoprotective compounds in cyanobacteria, phytoplankton and macroalgae-a database. Journal of Photochemistry and Photobiology B: Biology, 58, 115–122.Google Scholar
  37. Grossman, A. R., Schaefer, M. R., Chiang, G. G., & Collier, J. L. (1993). Phycobilisome, a light harvesting complex responsive to environmental conditions. Microbiological Reviews, 57, 725–749.PubMedGoogle Scholar
  38. Häder, D.-P. (1987a). Photomovement. In: P. Fay & C. Van Baalen (Eds.), The Cyanobacteria (pp. 325–345). Amsterdam: Elsevier.Google Scholar
  39. Häder, D.-P. (1987b). Photosensory behavior in prokaryotes. Microbiological Reviews, 51, 1–21.PubMedGoogle Scholar
  40. Hagemann, M., & Marin, K. (1999). Salt-induced sucrose accumulation is mediated by sucrose-phosphate-synthase in cyanobacteria. Journal of Plant Physiology, 155, 424–430.Google Scholar
  41. Hansen, J., Sato, M., Ruedy, R., Lacis, A. & Oinas, V. (2000). Global warming in the twenty-first century, An alternative scenario. Proceedings of the National Academy of Sciences (USA), 97, 9875–9880.Google Scholar
  42. Herman, C., Lecat, S., D’Ari, R., & Bouloc, P. (1995). Regulation of the heat-shock response depends on divalent metal ions in an hfIB mutant of Escherichia coli. Molecular Microbiology, 18, 247–255.Google Scholar
  43. Howarth, C. J., & Ougham, H. J. (1993). Gene expression under temperature stress. New Phytologist, 125, 1–26.Google Scholar
  44. Jorgensen, B. B., Cohen, Y., & Revsbech, N. P. (1988). Photosynthetic potential and light-dependent 02 consumption in a benthic cyanobacterial mat. Applied and Environmental Microbiology, 54, 176–182.PubMedGoogle Scholar
  45. Kannaiyan, S., Govindarajan, K., Lewin, H. D., & Venkataraman, G. S. (1982). Influence of blue-green algal application on rice crop. Madras Agriculture Journal, 69, 1–5.Google Scholar
  46. Karentz, D. (1994). Ultraviolet tolerance mechanisms in Antarctic marine organisms. In: C. S. Weiler & P. A. Penhale (Eds.), Ultraviolet radiation in Antarctica: Measurements and biological effects. Antarctic Research Series, 62,93–110.Google Scholar
  47. Kerr, J. B., & McElroy, C. T. (1993). Evidence for large upward trends of ultraviolet-B radiation linked to ozone depletion. Science, 262, 1032–1034.PubMedGoogle Scholar
  48. Kim, J. K., Patel, D., & Choi, B. S. (1995). Contrasting structural impacts induced by cis-syn cyclobutane dimer and (6-4) adduct in DNA duplex decamers: Implication in mutagenesis and repair activity. Photochemistry and Photobiology, 62, 44–50.PubMedGoogle Scholar
  49. Kim, S.-T., & Sancar, A. (1995). Photorepair of nonadjacent pyrimidine dimers by DNA photolyase. Photochemistry and Photobiology, 61, 171–174.PubMedGoogle Scholar
  50. Kimpel, J. A., & Key, J. L. (1985). Heat shock in plants. Trends in Biochemical Sciences, 10, 353–357.Google Scholar
  51. Kuhlbusch, T. A., Lobert, J. M., Crutzen, P. J., & Warneck, P. (1991). Molecular nitrogen emissions from denitrification during biomass burning. Nature, 351, 135–137.Google Scholar
  52. Kumar, A., Sinha, R. P., & Häder, D.-P. (1996a). Effect of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc calcicola. Journal of Plant Physiology, 148, 86–91.Google Scholar
  53. Kumar, A., Tyagi, M. B., Srinivas, G., Singh, N., Kumar, H. D., Sinha, R. P., & Häder, D.-P. (1996b). UVB shielding role of FeCl3 and certain cyanobacterial pigments. Photochemistry and Photobiology, 64, 321–325.Google Scholar
  54. Levitt, J. (1980). Responses of plants to environmental stress. Chilling, freezing and high temperature stress. Vol. 1, New York: Academic Press.Google Scholar
  55. Lin, C. Y., Roberts, J. K., & Key, J. L. (1984). Acquisition of thermotolerance in soybean seedlings. Plant Physiology, 74, 152–160.PubMedGoogle Scholar
  56. Lindquist, S. (1981). Regulation of protein synthesis during heat shock. Nature, 293, 311–314.PubMedGoogle Scholar
  57. Lubin, D., & Jensen, E. H. (1995). Effects of clouds and stratospheric ozone depletion on ultraviolet radiation trends. Nature, 377, 710–713.Google Scholar
  58. Lyamichev, V. (1991). Unusual conformation of (dA)n(dT)n-tracts as revealed by cyclobutane thymine-thymine dimer formation. Nucleic Acids Research, 19, 4491–4496.PubMedGoogle Scholar
  59. Miller, M. W., & Ziskin, M. C. (1989). Biological consequences of hyperthermia. Ultrasound in Medicine and Biology, 15, 707–722.PubMedGoogle Scholar
  60. Monnin, E., Indermühle, A., Dällenbach, A., Flückiger, J., Stauffer, B., Stocker, T. F., Raynaud, D., & Barnola, J.-M. (2001). Atmospheric C02 concentrations over the last glacial termination. Science, 291, 112–114.PubMedGoogle Scholar
  61. NASA encounters biggest-ever Antarctic ozone hole. (2000). Nature, 407, 122.Google Scholar
  62. Nicholson, P., Varley, J. P. A., & Howe, C. J. (1991). A comparison of stress responses in the cyanobacterium Phormidium laminosum. FEMS Microbiology Letters, 78, 109–114.Google Scholar
  63. Oren, A. (1997). Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiology Journal, 14, 231–240.Google Scholar
  64. Oren, A., & Shilo, M. (1979). Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Archives of Microbiology, 122, 77–84.Google Scholar
  65. Pace, N. R. (1997). A molecular view of microbial diversity and the biosphere. Science, 276, 734–740.PubMedGoogle Scholar
  66. Padan, E. (1979). Facultative anoxygenic photosynthesis in cyanobacteria. Annual Review of Plant Physiology, 30, 27–40.Google Scholar
  67. Park, H. W., Kim, S. T., Sancar, A., & Deisenhofer, J. (1995). Crystal structure of DNA photolyase from Escherichia coli. Science, 268, 1866–1872.PubMedGoogle Scholar
  68. Parker, B. C, Heiskell, L. E., & Thompson, W. J. (1978). Nonbiogenic fixed nitrogen in Antarctica and some ecological implications. Nature, 271, 651–652.Google Scholar
  69. Parry, M. L., Carter, T. R., & Porter, J. H. (1989). The greenhouse effect and the future of UK agriculture. Journal of Royal Agricultural Society of England, 150, 120–181.Google Scholar
  70. Pehrson, J. R., & Cohen, L. H. (1992). Effects of DNA looping on pyrimidine dimer formation. Nucleic Acid Research, 20, 1321–1324.Google Scholar
  71. Portwich, A., & Garcia-Pichel, F. (2000). A novel prokaryotic UVB photoreceptor in the cyanobacterium Chlorogloeopsis PCC 6912. Photochemistry and Photobiology, 71, 493–498.PubMedGoogle Scholar
  72. Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiological Reviews, 58, 755–805.PubMedGoogle Scholar
  73. Potts, M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. European Journal of Phycology, 34, 319–328.Google Scholar
  74. Proteau, P. J., Gerwick, W. H., Garcia-Pichel, F., & Castenholz, R. W. (1993). The structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia, 49, 825–829.PubMedGoogle Scholar
  75. Quesada, A., & Vincent, W. F. (1997). Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. European Journal of Phycology, 32, 335–342.Google Scholar
  76. Rambler, M. B., & Margulis, L. (1980). Bacterial resistance to ultraviolet radiation under anaerobiosis: Implications for pre-Phanerozoic evolution. Science, 210, 638–640.PubMedGoogle Scholar
  77. Reynolds, C. S., Oliver, R. L., & Walsby, A. E. (1987). Cyanobacterial dominance: The role of buoyancy regulation in dynamic lake environments. New Zealand Journal of Marine and Freshwater Research, 21, 379–390.Google Scholar
  78. Richter, P., Krywult, M., Sinha, R. P., & Häder, D.-P. (1999). Calcium signals from heterocysts of Anabaena sp. after UV irradiation. Journal of Plant Physiology, 154, 137–139.Google Scholar
  79. Robertson, G. P., Paul, E. A., & Harwood, R. R. (2000). Greenhouse gases in intensive agriculture: Contributions of individual gases to the radiative forcing of the atmosphere. Science, 289, 1922–1925.PubMedGoogle Scholar
  80. Roger, P. A., & Kulasooriya (1980). Blue-green Algae and rice. Los Banos, Laguna, Philippines: International Rice Research Institute.Google Scholar
  81. Sancar, G. B., Smith, F. W., Reid, R., Payne, G., Levy, M., & Sancar, A. (1987). Action mechanism of Escherichia coli DNA photolyase: I. Formation of the enzyme-substrate complex. Journal of Biological Chemistry, 262, 478–485.PubMedGoogle Scholar
  82. Scherer, S., Chen, T. W., & Böger, P. (1988). A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiology, 88, 1055–1057.PubMedGoogle Scholar
  83. Schöffl, F., Rossol, I., & Angermüller, S. (1987). Regulation of the transcription of heat shock genes in nuclei from soybean (Glycine max) seedlings. Plant, Cell and Environment, 10, 113–120.Google Scholar
  84. Schopf, J. W (1993). Microfossils of the early archean apex chert: New evidence of the antiquity of life. Science, 260, 640–646.PubMedGoogle Scholar
  85. Schubert, H., Fulda, S., & Hagemann, M. (1993). Effects of adaptation to different salt concentration on photosynthesis and pigmentation of the cyanobacterium Synechocystis sp. PCC 6803. Journal of Plant Physiology, 142, 291–295.Google Scholar
  86. Singh, R. N. (1961). Role of blue-green algae in nitrogen economy of Indian agriculture. New Delhi: Indian Council of Agricultural Research.Google Scholar
  87. Sinha, R. P., & Häder, D.-P. (1996a). Photobiology and ecophysiology of rice field cyanobacteria. Photochemistry and Photobiology, 64, 887–896.Google Scholar
  88. Sinha, R. P., & Häder, D.-P. (1996b). Response of a rice field cyanobacterium Anabaena sp. to physiological stressors. Environmental and Experimental Botany, 36, 147–155.Google Scholar
  89. Sinha, R. P., & Häder, D.-P. (1998). Effects of ultraviolet-B radiation in three rice field cyanobacteria. Journal of Plant Physiology, 153, 763–769.Google Scholar
  90. Sinha, R. P., & Häder, D.-P. (2000). Effects of UV-B radiation on cyanobacteria. Recent Research Developments in Photochemistry & Photobiology, 4, 239–246.Google Scholar
  91. Sinha, R. P., Ambasht, N. K., Sinha, J. P., & Hader, D.-P. (2002a). Wavelength dependent induction of a mycosporine-like amino acid in a rice-field cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochemical and Photobiological Sciences (in press).Google Scholar
  92. Sinha, R. P., Klisch, M., Gröniger, A., & Häder, D.-P. (1998b). Ultraviolet-absorbing/screening substances in cyanobacteria, phytoplankton and macroalgae. Journal of Photochemistry and Photobiology B: Biology, 47, 83–94.Google Scholar
  93. Sinha, R. P., Klisch, M., Gröniger, A., & Häder, D.-P. (2000). Mycosporine-like amino acids in the marine red alga Gracilaria cornea-effects of UV and heat. Environmental and Experimental Botany, 43, 33–43.Google Scholar
  94. Sinha, R. P., Klisch, M., & Häder, D.-P. (1999b). Induction of a mycosporine-like amino acid (MAA) in the rice-field cyanobacterium Anabaena sp. by UV irradiation. Journal of Photochemistry and Photobiology B: Biology, 52, 59–64.Google Scholar
  95. Sinha, R. P., Klisch, M., Helbling, E. W., & Häder, D.-P. (2001). Induction of mycosporine-like amino acids (MAAs). in cyanobacteria by solar ultraviolet-B radiation. Journal of Photochemistry and Photobiology B: Biology, 60 129–135.Google Scholar
  96. Sinha, R. P., Klisch, M., Vaishampayan, A., & Häder, D.-P. (1999c). Biochemical and spectroscopic characterization of the cyanobacterium Lyngbya sp. inhabiting Mango (Mangifera indica) trees: Presence of an ultraviolet-absorbing pigment, scytonemin. Ada Protozoologica, 38, 291–298.Google Scholar
  97. Sinha, R. P., Kumar, H. D., Kumar, A., & Häder, D.-P. (1995a). Effects of UV-B irradiation on growth, survival, pigmentation and nitrogen metabolism enzymes in cyanobacteria. Ada Protozoologica, 34, 187–192.Google Scholar
  98. Sinha, R. P., Lebert, M., Kumar, A., Kumar, H. D., & Häder, D.-P. (1995b). Disintegration of phycobilisomes in a rice field cyanobacterium Nostoc sp. following UV irradiation. Biochemistry and Molecular Biology International, 37, 697–706.PubMedGoogle Scholar
  99. Sinha, R. P., Lebert, M., Kumar, A., Kumar, H. D., & Häder, D.-P. (1995c). Spectroscopic and biochemical analyses of UV effects on phycobiliproteins of Anabaena sp. and Nostoc carmium. Botanica Ada, 180, 87–92.Google Scholar
  100. Sinha, R. P., Singh, S. C., & Häder, D.-P. (1999a). Photoecophysiology of cyanobacteria. Recent Research Developments in Photochemistry & Photobiology, 3, 91–101.Google Scholar
  101. Sinha, R. P., Singh, N., Kumar, A., Kumar, H. D., Häder, M., & Häder, D.-P. (1996). Effects of UV irradiation on certain physiological and biochemical processes in cyanobacteria. Journal of Photochemistry and Photobiology B: Biology, 32, 107–113.Google Scholar
  102. Sinha, R. P., Singh, N., Kumar, A., Kumar, H. D., & Häder, D.-P. (1997). Impacts of ultraviolet-B irradiation on nitrogen-fixing cyanobacteria of rice paddy fields. Journal of Plant Physiology, 150, 188–193.Google Scholar
  103. Sinha, R. P., Sinha, J. P., Gröniger, A., & Häder, D.-P. (2002b). Polychromatic action spectrum for the induction of a mycosporine-like amino acid in a rice-field cyanobacterium, Anabaena sp. Journal of Photochemistry and Photobiology B: Biology, 66, 47–53.Google Scholar
  104. Sinha, R. P., Vaishampayan, A., & Häder, D.-P. (1998a). Plant-cyanobacterial symbiotic somaclones as a potential bionitrogen-fertilizer for paddy agriculture: Biotechnological approaches. Microbiological Research, 153, 297–307.Google Scholar
  105. Spurgeon, D. (2000). Global warming threatens extinction for many species. Nature, 407, 121.PubMedGoogle Scholar
  106. Storti, R. V., Scott, M. P., Rich, A., & Pardue, M. L. (1980). Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell, 22, 825–834.Google Scholar
  107. Tabazadeh, A., Santee, M. L., Danilin, M. Y., Pumphrey, H. C., Newman, P. A., Hamill, P. J., & Mergenthaler, J. L. (2000). Quantifying denitrification and its effect on ozone recovery. Science, 288, 1407–1411.PubMedGoogle Scholar
  108. Tamada, T., Kitadokoro, K., Higuchi, Y., Inaka, K., Yasui, A., de Ruiter, P. E., Eker, A. P., & Miki, K. (1997). Crystal structure of DNA photolyase from Anacystis nidulans. Nature Structural Biology, 4, 887–891.PubMedGoogle Scholar
  109. Tandeau de Marsac, N. (1977). Occurrence and nature of chromatic adaptation in cyanobacteria. Journal of Bacteriology, 750,82–91.Google Scholar
  110. Tandeau de Marsac, N., & Houmard, J. (1993). Adaptation of cyanobacteria to environmental stimuli, new steps towards molecular mechanisms. FEMS Microbiology Reviews, 104, 119–190.Google Scholar
  111. Tel-Or, E. (1980). Response of N2 -fixing cyanobacteria to salt. Applied Environmental Microbiology, 40,689–693.Google Scholar
  112. Thoma, F. (1999). Light and dark in chromatin repair, repair of UV-induced DNA lesions by photolyase and nucleotide excision repair. The EMBO Journal, 18, 6585–6598.PubMedGoogle Scholar
  113. Thomas, S. P., Zaritsky, A., & Boussiba, S. (1990). Ammonia excretion by an L-methionine-DL-sulfoximine resistant mutant of the rice field cyanobacterium Anabaena siamensis. Applied and Environmental Microbiology, 56, 3499–3504.PubMedGoogle Scholar
  114. Toon, O. B., & Turco, R. P. (1991). Polar stratospheric clouds and ozone depletion. Scientific American, 264, 68–74.Google Scholar
  115. Upchurch, R. G., & Elkan, G. H. (1977). Comparision of colony morphology, salt tolerance and effectiveness in Rhizobium japonicum. Canadian Journal of Microbiology, 23, 1118–1122.PubMedGoogle Scholar
  116. Vaishampayan, A., Sinha, R. P., & Häder, D.-P. (1998). Use of genetically improved nitrogen-fixing cyanobacteria in rice paddy fields, prospects as a source material for engineering herbicide sensitivity and resistance in plants. Botanica Acta, 111, 176–190.Google Scholar
  117. Venkataraman, G. S. (1972). Algal biofertilizers and rice cultivation. New Delhi: Today and Tomorrows Printers and Publishers.Google Scholar
  118. Vincent, W. F., & Quesada, A. (1994). Ultraviolet radiation effects on cyanobacteria, implication for Antarctic microbial ecosystems. In: C. S. Weiler & P. A. Penhale (Eds.), Ultraviolet radiation in Antarctica, Measurements and biological effects. Antarctic Research Series, American Geophysical Union, 62, 111–124.Google Scholar
  119. Vincent, W. F., & Roy, S. (1993). Solar ultraviolet-B radiation and aquatic primary production: Damage, protection, and recovery. Environmental Reviews, 1, 1–12.Google Scholar
  120. Vonshak, A., Guy, R., & Guy, M. (1988). The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Archives of Microbiology, 150, 417–420.Google Scholar
  121. Walsby, T. (1975). Gas vesicles. Annual Review of Plant Physiology, 36, 427–439.Google Scholar
  122. Wang, C. I., & Taylor, J. S. (1991). Site-specific effect of thymine dimer formation on dAn · dTn tract bending and its biological implications. Proceedings of the National Academy of Sciences (USA), 88, 9072–9076.Google Scholar
  123. Walter, M. R., Bauld, J., Des Marais, D. J., & Schopf, J. W. (1992). A general comparison of microbial mats and microbial stromatolites bridging the gap between the modern and the fossil. In: J. W. Schopf & C. Klein (Eds.), The Proterozoic biosphere (pp. 335–338). Cambridge, UK: Cambridge University Press.Google Scholar
  124. Watanabe, I. (1984). Use of symbiotic, free-living blue-green algae in rice culture. Outlook on Agriculture, 13, 166–172.Google Scholar
  125. Westwood, J. T., Clos, J., & Wu, C. (1991). Stress-induced digomerization and chromosomal relocalization of heat-shock factor. Nature, 353, 822–827.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Rajeshwar P. Sinha
    • 1
  1. 1.Institute for Botany and Pharmaceutical BiologyFriedrich-Alexander UniversityErlangenFed. Rep. Germany

Personalised recommendations