Advertisement

Electron Spins in Ionic Molecular Structures

  • Gerald F. Dionne

Abstract

Magnetism in ionic compounds has been investigated from the earliest decades of the twentieth century, culminating during the middle years with a plethora of research results from a variety of academic, government, and industrial laboratories. Motivation behind these efforts came mainly from two directions: microwave spectroscopy of individual magnetic ions in paramagnetic crystals that served as the foundation of amplification devices, e.g., the maser, that were intended for advanced radar and communications applications, and the multidiscipline investigations of ferrimagnetic oxide materials (ferrites) for high frequency and microwave applications, as well as for the burgeoning field of information storage and the more conventional functions requiring high permeability combined with electrical insulating properties for electromagnet and inductor cores. The scientific endeavors over these years were staggering in scope as is evidenced by the volumes of literature produced during the period following World War II and extending into the 1970s. More recently three advances that involve the transport of charge carriers has re-energized the field of magnetic oxides. Among these initiatives is high-temperature superconductivity, magneto-resistance, and polarized-spin transport found in select transition-metal oxide compounds that offer the promise of integration for the enabling of future electronic technologies.

Keywords

Crystal Field Orbital Angular Momentum Orbital State Spin Alignment Large Polaron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

General Background

  1. A. H. Morrish, The Physical Principles of Magnetism (John Wiley, New York, 1965).Google Scholar
  2. S. Chikazumi, Physics of Magnetism (John Wiley, New York, 1964).Google Scholar
  3. K. Yosida, Theory of Magnetism (Springer, New York, 1996).MATHGoogle Scholar
  4. R. M. White, Quantum Theory of Magnetism (Springer, New York, 1983).Google Scholar
  5. C. J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes (W & J Mackay,Chatham, England, 1979).Google Scholar
  6. J. S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1961).MATHGoogle Scholar
  7. M. M. Schieber, Experimental Magnetochemistry (John Wiley, New York, 1967).Google Scholar
  8. C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory (W.A. Benjamin, New York, 1964).Google Scholar

Crystal Fields and Oxide Chemistry

  1. L. E. Orgel, An Introduction to Transition-Metal Chemistry: Ligand Field Theory (John Wiley, New York,1960).Google Scholar
  2. C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).MATHGoogle Scholar
  3. H. L. Schlafer and G. Gliemann, Basic Principles of Ligand Field Theory (Wiley-Interscience, New York,1969).Google Scholar
  4. W. Low, Paramagnetic Resonance in Solids (Academic Press, New York, 1960).MATHGoogle Scholar
  5. G. E. Pake, Paramagnetic Resonance (W. A. Benjamin, New York, 1962).Google Scholar
  6. D. S. McClure, Electronic spectra of molecules and ions in crystals. Part II. Spectra of ions in crystals,Solid State Phys. 9, 399 (1959).CrossRefGoogle Scholar
  7. M. T. Hutchings, Point-charge calculations of energy levels of magnetic ions in crystalline electric fields,Solid State Phys. 16, 227 (1964).CrossRefGoogle Scholar
  8. G. F. Dionne, Calculation of crystal-field energy level splittings of the Ti3+ ion in RbAl(SO4)- 12H2O,Phys. Rev. A 137, 743 (1965).ADSCrossRefGoogle Scholar

Covalence and Superexchange

  1. C. J. Ballhausen and H. B. Gray, Molecular Electronic Structures (Benjamin/Cummings, New York, 1980).Google Scholar
  2. P. W. Anderson, New approach to the theory of superexchange interactions, Phys. Rev. 115, 2 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  3. J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals, J. Chem. Phys.Solids 10, 87 (1959).ADSCrossRefGoogle Scholar
  4. P. W Anderson, Theory of magnetic exchange interactions: exchange in insulators and semiconductors,Solid State Phys. 14, 99 (1963).CrossRefGoogle Scholar
  5. J. B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, John Wiley, New York,1963).Google Scholar
  6. J. B. Goodenough and J. M Longo, Crystallographic and magnetic properties of perovskites and perovskite-related compounds,in:Landolt-BornsteinTabellen;New SeriesIII/4a,editedby K. Hellwege (Springer, Berlin, 1970) p. 231.Google Scholar

Ferrimagnetism

  1. J. Smit and H. P. J. Wijn, Ferrites (John Wiley, New York, 1959).Google Scholar
  2. E. P. Wohlfarth (Ed.), Ferromagnetic Materials, vol. 2 (North Holland, New York, 1980). Chapters by M.A. Gilleo (magnetic garnets), J. Nicolas (microwave ferrites), and P. I. Slick (nonmicrowave ferrites).Google Scholar
  3. G. Winkler, Magnetic Garnets (Braunschweig, Wiesbaden, Vieweg, 1981).Google Scholar
  4. S. Geller, Crystal and static magnetic properties of garnets, Proceedings of the International School of PhysicsEnrico Fermi,” Course LXX, Varenna, Italy 1977 (North Holland, New York, 1978).Google Scholar
  5. G. F. Dionne, Molecular-field coefficients of substituted yttrium iron garnets, J. Appl. Phys. 41, 4874(1970).ADSCrossRefGoogle Scholar
  6. W. P. Wolf, Effect of crystalline electric fields on ferromagnetic anisotropy, Phys. Rev. 108, 1152 (1957).ADSCrossRefGoogle Scholar
  7. G. F. Dionne, Origin of the magnetostriction effects from Mn3+, Co2+, and Fe2+ ions in ferrimagnetic spinels and garnets, J. Appl. Phys. 50, 4263 (1979).ADSCrossRefGoogle Scholar
  8. B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics (McGraw Hill, New York, 1962).Google Scholar
  9. W. H. Von Aulock, Handbook of Microwave Ferrite Materials (Academic Press, New York, 1965).Google Scholar
  10. E. Schloemann, Microwave ferrite materials, in: Encyclopedia of Electrical and Electronics Engineering,vol. 13 (John Wiley, New York, 1999), p. 90.Google Scholar

Charge Transfer

  1. R. J. D. Tilley, Defect Crystal Chemistry and Its Applications (Blackie, Glasgow and London, 1987),Chapter 6.Google Scholar
  2. J. B. Goodenough, Metallic oxides, Prog. Solid State Chem. 5, 145 (1972).ADSCrossRefGoogle Scholar
  3. T. Holstein, Studies of polaron motion, Ann. Phys. 8, 325 (1959).ADSMATHCrossRefGoogle Scholar
  4. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, 1990).Google Scholar
  5. J. Appel, Polarons, Solid State Phys. 21, 193 (1968).CrossRefGoogle Scholar
  6. J. B. Goodenough, A. Wold, N. Menyuk, and R. J. Arnott, Relationship between crystal symmetry and magnetic properties of ionic compounds containing Mn3+, Phys. Rev. 124, 373 (1961).ADSCrossRefGoogle Scholar
  7. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure, Phys. Rev. 82, 403 (1951).ADSCrossRefGoogle Scholar
  8. P. -G. de Gennes, Effects of double exchange in magnetic oxides, Phys. Rev. 118, 141 (1960).Proceedings of the International Workshop on the Colossal Magnetoresistance Effect, edited by N. Witte and J. B. Goodenough, Aust. J. Phys. 52 (1999).ADSCrossRefGoogle Scholar
  9. G. F. Dionne, Magnetic exchange and charge transfer in mixed valence manganites and cuprates, J. Appl.Phys. 79, 5172 (1996); Anomalous magnetoresistance in the lanthanide manganites and its relation to high-Tc superconductivity, MIT Lincoln Laboratory Technical Report 1029, (1996). AD-A309080ADSCrossRefGoogle Scholar
  10. R. R. Heikes and W. D. Johnston, Mechanisms of conduction in Li-substituted transition metal oxides,J. Chem. Phys. 26, 582 (1957).ADSCrossRefGoogle Scholar
  11. G. F. Dionne, Magnetic frustration in high-Tc superconductors, J. Appl. Phys. 69, 5194 (1991).ADSCrossRefGoogle Scholar
  12. G. F. Dionne, Covalent electron transfer theory of superconductivity, MIT Lincoln Laboratory Technical Report 885 (1992). AD-A253975Google Scholar

References

  1. 1.
    J. H. Van Vleck, The Theory of Electric and Magnetic Susceptibilities (Oxford University Press,London, 1932).MATHGoogle Scholar
  2. 2.
    W. Borchardt-Ott, Crystallography (Springer, New York, 1995)CrossRefGoogle Scholar
  3. 2a.
    M. J. Buerger, Elementary Crystallography (John Wiley, New York, 1956).Google Scholar
  4. 3.
    J. S. Griffith, The Theory of Transition-Metal Ions (Cambridge University Press, London, 1961).MATHGoogle Scholar
  5. 4.
    C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962).MATHGoogle Scholar
  6. 5.
    H. L. Schlafer and G. Gliemann, Basic Principles of Ligand Field Theory (Wiley- Interscience, New York, 1969).Google Scholar
  7. 6.
    E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge University Press,London, 1963).MATHGoogle Scholar
  8. 7.
    C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), Appendix I,p. 93.MATHGoogle Scholar
  9. 8.
    H. B. Kramers, Proc. Amsterdam Acad. Sci. 32, 1176 (1929).Google Scholar
  10. 9.
    J. H. Van Vleck, Phys. Rev. 41, 208 (1932).ADSCrossRefGoogle Scholar
  11. 10.
    W. G. Penney and R. Schlapp, Phys. Rev. 41, 194 (1932)ADSCrossRefGoogle Scholar
  12. 10a.
    R. Schlapp and W. G. Penney, Phys. Rev.42, 666 (1932).ADSCrossRefGoogle Scholar
  13. 11.
    W. Low, Paramagnetic Resonance in Solids (Academic Press, New York, 1960), p. 15.Google Scholar
  14. 12.
    W. Low, Paramagnetic Resonance in Solids (Academic Press, New York, 1960), p. 22.Google Scholar
  15. 13.
    K. W. H. Stevens, Proc. Phys. Soc. A 65, 209 (1952).ADSMATHCrossRefGoogle Scholar
  16. 14.
    M. T. Hutchings, Solid State Phys. 16, 227 (1964).CrossRefGoogle Scholar
  17. 15.
    C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), p. 99.MATHGoogle Scholar
  18. 16.
    M. H. L. Pryce and W. A. Runciman, Discuss. Faraday Soc. 26, 34 (1958).CrossRefGoogle Scholar
  19. 17.
    G. F. Dionne and B. J. Palm, J. Magn. Reson. 68, 355 (1986).Google Scholar
  20. 18.
    C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), p. 103.Google Scholar
  21. 19.
    L. E. Orgel, Introduction to Transition-Metal Chemistry: Ligand-Field Theory (John Wiley, New York, 1959).Google Scholar
  22. 20.
    O. G. Holmes and D. S. McClure, J. Chem Phys. 26, 1686 (1957).ADSCrossRefGoogle Scholar
  23. 21.
    G. F. Dionne, Phys. Rev. A 137, 743 (1965)ADSGoogle Scholar
  24. 21a.
    G. F. Dionne Can. J. Phys. 42, 2419 (1964).ADSCrossRefGoogle Scholar
  25. 22.
    J. A. MacKinnon and G. F. Dionne, Can. J. Phys. 44, 2329 (1966).ADSCrossRefGoogle Scholar
  26. 23.
    G. F. Dionne and J. A. MacKinnon, Phys. Rev. 172, 325 (1968).ADSCrossRefGoogle Scholar
  27. 24.
    G. A. Woonton and J. A. MacKinnon, Can. J. Phys. 46, 59 (1968).ADSCrossRefGoogle Scholar
  28. 25.
    B. Bleaney, G. S. Bogle, A. H. Cooke, R. J. Duffus, M. C. M. O’Brien, and K. W. H. Stevens, Proc.Phys. Soc. A 68, 57 (1955).ADSCrossRefGoogle Scholar
  29. 26.
    L. S. Kornienko and A. M. Prokhorov, Sov. Phys. JETP 11, 1189 (1960).Google Scholar
  30. 27.
    H. Hartmann and H. L. Schlafer, Z. Phys. Chem. Leipzig 197, 116 (1951).Google Scholar
  31. 28.
    M. H. L. Pryce, Proc. Phys. Soc. A 63, 25 (1951)ADSCrossRefGoogle Scholar
  32. 28a.
    A. Abragam and M. H. L. Pryce, Proc. Roy. Soc.A 205, 135 (1951).ADSMATHCrossRefGoogle Scholar
  33. 29.
    H. A. Jahn and E. Teller, Proc. R. Soc. A 161,220 (1937)ADSCrossRefGoogle Scholar
  34. 29a.
    H. A. Jahn, Proc. R. Soc. A 164,117 (1938).ADSCrossRefGoogle Scholar
  35. 30.
    J. H. Van Vleck, Phys. Rev. 57, 426 (1940).ADSCrossRefGoogle Scholar
  36. 31.
    J. B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, John Wiley, New York, 1963), pp. 192, 213.Google Scholar
  37. 32.
    G. F. Dionne, J. Appl. Phys. 91, 7367 (2002).ADSCrossRefGoogle Scholar
  38. 33.
    M. Kaplan and B. Vekhter, Cooperative Phenomena in Jahn-Teller Crystals (Plenum Publishing Corporation, New York, 1995).CrossRefGoogle Scholar
  39. 34.
    L. Dubicki and M. J. Riley, J. Chem. Phys. 106, 1669 (1997).ADSCrossRefGoogle Scholar
  40. 35.
    P. L. W. Tregenna-Piggott, M. C. M. O’Brien, J. R. Pilbrow, H. U. Gudel, S. P. Best, and C. Noble,J. Chem. Phys. 107, 8275 (1997).ADSCrossRefGoogle Scholar
  41. 36.
    W. Low, Phys. Rev. 101, 1827 (1956).MathSciNetADSCrossRefGoogle Scholar
  42. 37.
    K. Ono, S. Koide, S. Sekiyama, and H. Abe, Phys. Rev. 96, 38 (1954).ADSCrossRefGoogle Scholar
  43. 38.
    B. Bleaney, K. D. Bowers, and R. J. Trenam, Proc. R. Soc. A 228, 157 (1955).ADSCrossRefGoogle Scholar
  44. 39.
    G. M. Zverev and A. M. Prokhorov, J. Exp. Phys. USSR 34, 1023 (1958).Google Scholar
  45. 40.
    W. Low, Paramagnetic Resonance in Solids (Academic Press, New York, 1960), p. 91.MATHGoogle Scholar
  46. 41.
    C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), p. 124 (on work of Abragam and Pryce).MATHGoogle Scholar
  47. 42.
    K. D. Bowers and J. Owen, Rep. Prog. Phys. 18, 310 (1955).ADSCrossRefGoogle Scholar
  48. 43.
    J. W. Orton, Rep. Prog. Phys. 22, 204 (1959).ADSCrossRefGoogle Scholar
  49. 44.
    W. Low, Phys. Rev. 109, 247 (1958).ADSCrossRefGoogle Scholar
  50. 45.
    D. S. McClure, J. Chem. Solids 3, 311 (1957).ADSCrossRefGoogle Scholar
  51. 46.
    Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 753 (1954).ADSCrossRefGoogle Scholar
  52. 47.
    L. E. Orgel, J. Chem. Phys. 23, 1004 (1955).ADSCrossRefGoogle Scholar
  53. 48.
    W. Low, Paramagnetic Resonance in Solids (Academic Press, New York, 1960), p. 120.MATHGoogle Scholar
  54. 49.
    W. Heitler and F. London, Z. Phys. 44, 455 (1927).ADSMATHCrossRefGoogle Scholar
  55. 50.
    M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20, 837 (1952); C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York, 1962), p. 161; C. J. Ballhausen and H. B. Gray,Molecular Electronic Structures: An Introduction (Benjamin/Cummings Reading, MA, 1980).ADSCrossRefGoogle Scholar
  56. 51.
    C. J. Ballhausen, Molecular Electronic Structures of Transition Metal Complexes (McGraw-Hill International, Chatham, Great Britain, 1979), pp. 84–89.Google Scholar
  57. 52.
    J. C. Slater, Phys. Rev. 35, 509 (1930).ADSMATHCrossRefGoogle Scholar
  58. 53.
    E. C. Stoner, Proc. Leeds Philos. Soc. 2, 391 (1933).Google Scholar
  59. 54.
    A. Sommerfeld and H. Bethe, Handbuch der Physik, XXIV/2, (J. Springer, Berlin 1933), p. 596.Google Scholar
  60. 55.
    A. H. Morrish, The Physical Principles of Magnetism (John Wiley, New York, 1965), p. 279.Google Scholar
  61. 56.
    K. Yosida, Theory of Magnetism (Springer, New York, 1996), p. 54.MATHGoogle Scholar
  62. 57.
    W. Heisenberg, Z. Phys. 49, 619 (1928).ADSMATHCrossRefGoogle Scholar
  63. 58.
    B. Lax and K. J. Button, Microwave Ferrites and Ferrimagnetics, Lincoln Laboratory Publication,(McGraw-Hill, New York, 1962), p. 65.Google Scholar
  64. 59.
    J. B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, John Wiley, New York, 1963), p. 213, Chapter II.Google Scholar
  65. 60.
    H. B. Kramers, Proc. Amsterdam Acad. Sci. 33, 959 (1930)MATHGoogle Scholar
  66. 60a.
    H. B. Kramers Physica 1, 182 (1934).ADSMATHCrossRefGoogle Scholar
  67. 61.
    P. W. Anderson, Phys. Rev. 79, 350 (1950)ADSMATHCrossRefGoogle Scholar
  68. 61a.
    P. W. Anderson, Phys. Rev. 115, 2 (1959)MathSciNetADSMATHCrossRefGoogle Scholar
  69. 61b.
    P. W.Anderson, Solid State Phys. 14, 99 (1969).CrossRefGoogle Scholar
  70. 62.
    J. B. Goodenough, Magnetism and the Chemical Bond (Interscience Publishers, John Wiley, New York, 1963), p. 167–171.Google Scholar
  71. 63.
    C. Zener, Phys. Rev. 82, 403 (1951).ADSCrossRefGoogle Scholar
  72. 64.
    P. G. de Gennes, Phys. Rev. 118, 141 (1960).ADSCrossRefGoogle Scholar
  73. 65.
    P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955)ADSCrossRefGoogle Scholar
  74. 65a.
    T. Nagamiya, K. Yosida, and R. Kubo, Adv. Phys. 4, 1 (1955).ADSCrossRefGoogle Scholar
  75. 66.
    J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959).ADSCrossRefGoogle Scholar
  76. 67.
    J. B. Goodenough, Phys. Rev. 117, 1442 (1960)ADSCrossRefGoogle Scholar
  77. 68.
    J. B. Goodenough and A. L. Loeb, Phys. Rev. 8, 391 (1955).ADSCrossRefGoogle Scholar
  78. 69.
    L. Néel, Ann. Phys. Paris 3, 137 (1948).Google Scholar
  79. 70.
    G. F. Dionne, Magnetic Moment versus Temperature Curves of Ferrimagnetic Garnet Materials(MIT Lincoln Laboratory Technical Report 480, 1970), AD-A715284.Google Scholar
  80. 71.
    G. F. Dionne, Magnetic Moment versus Temperature Curves of LiZnTi Ferrites (MIT Lincoln Laboratory Technical Report 502, 1974), AD-A782421/2.Google Scholar
  81. 72.
    G. F. Dionne, Magnetic Moment versus Temperature Curves of Rare-Earth Iron Garnets (MIT Lincoln Laboratory Technical Report 588, 1981), AD-A107898/9.Google Scholar
  82. 73.
    G. F. Dionne, J. Appl. Phys. 41, 4874 (1970).ADSCrossRefGoogle Scholar
  83. 74.
    G. F. Dionne, J. Appl. Phys. 45, 3621 (1974).ADSCrossRefGoogle Scholar
  84. 75.
    G. F. Dionne, J. Appl. Phys. 85, 4627 (1999).ADSCrossRefGoogle Scholar
  85. 76.
    J. Smit and H. P. J. Wijn, Ferrites (John Wiley & Sons, New York, 1959), p. 156.Google Scholar
  86. 77.
    W. H. von Aulock, Handbook of Microwave Ferrite Materials (Academic Press, New York, 1965).Google Scholar
  87. 78.
    E. W. Gorter, Philips Res. Rep. 9, 295 (1954).Google Scholar
  88. 79.
    G. Blasse, Philips Res. Rep. Suppl. no. 3 (1964).Google Scholar
  89. 80.
    A. Broese van Groenou, P. F. Bongers, and A. L. Stuijts, Mater. Sci. Eng. 3, 317 (1968).Google Scholar
  90. 81.
    Landolt-Börnstein Tabellen, New Series III/4b, (Springer, New York, 1970).Google Scholar
  91. 82.
    A. P. Greifer, IEEE Trans. Magn. 5, 774 (1969).ADSCrossRefGoogle Scholar
  92. 83.
    M. M. Schieber, Experimental Magnetochemistry (North-Holland, Amsterdam, 1967).Google Scholar
  93. 84.
    M. I. Klinger and A. A. Samokhvalov, Phys. Stat. Sol. (b) 79, 9 (1977).ADSCrossRefGoogle Scholar
  94. 85.
    G. O. White and C. E. Patton, J. Magn. Magn. Mater. 9, 299 (1978).ADSCrossRefGoogle Scholar
  95. 86.
    C. Borghese, J. Phys. Chem. Solids 28, 2225 (1967).ADSCrossRefGoogle Scholar
  96. 87.
    R. Pauthenet, Ann. Phys. 7, 710 (1952).Google Scholar
  97. 88.
    G. F. Dionne and R. G. West, Appl. Phys. Lett. 48, 1488 (1986)ADSCrossRefGoogle Scholar
  98. 88a.
    G. F. Dionne and R. G. West,J. Appl. Phys. 61, 3868 (1987).ADSCrossRefGoogle Scholar
  99. 89.
    G. F. Dionne, J. Appl. Phys. 63, 3777 (1988).ADSCrossRefGoogle Scholar
  100. 90.
    Z. Simsa and V. A. M. Brabers, IEEE Trans. Magn. 11, 1303 (1975).ADSCrossRefGoogle Scholar
  101. 91.
    M. M. Schieber, Experimental Magnetochemistry (North-Holland, Amsterdam, 1967), p. 188.Google Scholar
  102. 92.
    G. F. Dionne, J. Appl. Phys. 61, 3865 (1987).ADSCrossRefGoogle Scholar
  103. 93.
    K. E. Kuehn, D. Sriram, S. S. Bayya, J. J. Simmins, and R. L. Snyder, J. Mater. Res. 15,1635 (2000).ADSCrossRefGoogle Scholar
  104. 94.
    G. Winkler, Magnetic Garnets (Friedr. Vieweg & Sohn, Braunschweig/Wiesbaden, 1981).Google Scholar
  105. 95.
    S. Geller, Physics of Magnetic Garnets, Proceedings of the International School of Physics, Course LXX (North-Holland, New York, 1978), p. 1.Google Scholar
  106. 96.
    M. A. Gilleo, In: Ferromagnetic Materials, vol. 2, edited by W. P. Wohlfarth (North-Holland, New York, 1980), Chapter 1.Google Scholar
  107. 97.
    S. Geller and M. A. Gilleo, J. Phys. Chem. Solids. 3, 30 (1957)ADSCrossRefGoogle Scholar
  108. 97a.
    S. Geller and M. A. Gilleo, J. Phys.Chem. Solids 9, 235 (1959).ADSCrossRefGoogle Scholar
  109. 98.
    E. R. Czerlinsky and R. A. MacMillan, Phys. Stat. Sol. 41, 333 (1970)ADSCrossRefGoogle Scholar
  110. 98a.
    E. R. Czerlinsky, Phys. Stat.Sol. 34, 483 (1969).ADSCrossRefGoogle Scholar
  111. 99.
    M. A. Gilleo and S. Geller, Phys. Rev. 110, 73 (1958).ADSCrossRefGoogle Scholar
  112. 100.
    R. Pauthenet, Compt. Rendus 243, 1499, 1737 (1956); R. Pauthenet, Ann. Phys. 3, 424 (1958).Google Scholar
  113. 100a.
    R. Pauthenet, Ann. Phys. 3, 424 (1958).CrossRefGoogle Scholar
  114. 101.
    R. Aléonard, J. Phys. Chem. Solids 15, 167 (1960).ADSCrossRefGoogle Scholar
  115. 102.
    G. F. Dionne, J. Appl. Phys. 46, 3347 (1976)ADSCrossRefGoogle Scholar
  116. 102a.
    G. F. Dionne and P. L. Tumelty, J. Appl. Phys. 50,8257 (1979).ADSCrossRefGoogle Scholar
  117. 103.
    C. D. Brandle and S. L. Blank, IEEE Trans. Magn. 12, 14 (1976).ADSCrossRefGoogle Scholar
  118. 104.
    P. Hansen, Physics of Magnetic Garnets Proceedings of the International School of Physics, Course LXX (North-Holland, New York, 1978) p. 56.Google Scholar
  119. 105.
    A. W. Overhauser, Phys. Rev. 128, 1437 (1962).ADSMATHCrossRefGoogle Scholar
  120. 106.
    H. Frohlich, Adv. Phys. 3, 325 (1954).ADSCrossRefGoogle Scholar
  121. 107.
    N. F. Mott, Metal-Insulator Transitions, (Taylor and Francis, New York, 1990).Google Scholar
  122. 108.
    T. Holstein, Ann. Phys. 8, 325 (1959)ADSMATHCrossRefGoogle Scholar
  123. 108a.
    L. Friedman and T. Holstein, Ann Phys. 21, 494 (1963).ADSCrossRefGoogle Scholar
  124. 109.
    J. B. Goodenough, Prog. Solid State Chem. 5, 145 (1972).ADSCrossRefGoogle Scholar
  125. 110.
    G. F. Dionne, Transition-Metal Oxide Superconductivity, MIT Lincoln Laboratory Technical Report 802 (1988). AD-A197069Google Scholar
  126. 111.
    G. F. Dionne, J. Appl. Phys. 67, 4561 (1990).ADSCrossRefGoogle Scholar
  127. 112.
    G. F. Dionne, Covalent Electron Transfer Theory of Superconductivity, MIT Lincoln Laboratory Technical Report 885 (1992). AD-A253975Google Scholar
  128. 113.
    G. F. Dionne, J. Appl. Phys. 69, 5194 (1991).ADSCrossRefGoogle Scholar
  129. 114.
    G. F. Dionne, A Strategy for Higher Temperature Superconductors, MIT Lincoln Laboratory Technical Report 1021 (1995). AD-A296885Google Scholar
  130. 115.
    G. F. Dionne, Temperature Dependence of Large Polaron Superconductivity, MIT Lincoln Laboratory Technical Report 1024 (1995). AD-A297287Google Scholar
  131. 116.
    G. F. Dionne, Anomalous Magnetoresistance in the Lanthanide Manganites and its Relation to High-T c Superconductivity, MIT Lincoln Laboratory Technical Report 1029 (1996). AD- A309080;G. F. Dionne, J. Appl. Phys. 79, 5172 (1996).ADSCrossRefGoogle Scholar
  132. 117.
    L. Friedman and T. Holstein, Ann Phys. 21, 494 (1963).ADSCrossRefGoogle Scholar
  133. 118.
    K. Siratori and S. Iida, J. Phys. Soc. Jpn. 15, 210 (1960); P. Hansen, Physics of Magnetic Garnets Proceedings of the International School of Physics, Course LXX (North-Holland, New York, 1978)p. 56, Table 1.9.ADSCrossRefGoogle Scholar
  134. 119.
    S. M. Watts, S. Wirth, S. von Molnar, A. Barry, and J. M. Coey, Phys. Rev. B, 61, 9621 (2000).ADSCrossRefGoogle Scholar
  135. 120.
    J. B. Goodenough, Prog. Solid State Chem. 5, 359 (1972).Google Scholar
  136. 121.
    K. I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, and Y. Tokura, Nature 395, 677 (1998).ADSCrossRefGoogle Scholar
  137. 122.
    Y. Moritomo, Sh. Xu, A Machida, T. Akimoto, E. Nishibori, M. Takata, and M. Sakata, Phys.Rev. B 61, R7827 (2000).ADSCrossRefGoogle Scholar
  138. 123.
    R. R. Heikes and W. D. Johnston, J. Chem. Phys. 26, 582 (1957).ADSCrossRefGoogle Scholar
  139. 124.
    R. J. D. Tilley, Defect Crystal Chemistry and its Applications (Blackie, Glasgow, London, 1987),Chapter 6.Google Scholar
  140. 125.
    G. F. Dionne, J. Appl. Phys. 69, 5194 (1991).ADSCrossRefGoogle Scholar
  141. 126.
    S. Jin, T. H Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Science 264, 413(1994).ADSCrossRefGoogle Scholar
  142. 127.
    J. B. Goodenough, Phys. Rev. 100, 564 (1955).ADSCrossRefGoogle Scholar
  143. 128.
    G. H. Jonker and J. H. Van Santen, Physica XVI, 337 (1950).ADSCrossRefGoogle Scholar
  144. 129.
    J. B. Goodenough, A. Wold, N. Menyuk, and R. J. Arnott, Phys. Rev. 124, 373 (1961).ADSCrossRefGoogle Scholar
  145. 130.
    M. Fäth, S. Freisem, A. A. Menovsky, Y. Tomioka, J. Aarts, and J. A. Mydosh, Science 285 (1999).Google Scholar
  146. 131.
    Y. -Q. Li, J. Zhang, S. Pombrik, S. DiMascio, W. Stevens, Y. F. Yan, and N. P. Ong, J. Mater. Res.10, 2166 (1995).ADSCrossRefGoogle Scholar
  147. 132.
    J. B. Goodenough and J. M. Longo, Crystallographic and magnetic properties of perovskites and perovskite-related compounds, in: Landolt-Bornstein Tabellen, New Series III/4a, edited by K. Hellwege (Springer, Berlin, 1970) p. 231.Google Scholar
  148. 133.
    J. B. Goodenough, Aust. J. Phys. 52, 155 (1999).ADSGoogle Scholar
  149. 134.
    J. B. Goodenough, G. Demazeau, M. Pouchard, and P. Hagenmüller, Solid State Chem. 8,325 (1973).ADSCrossRefGoogle Scholar
  150. 135.
    J. I. Budnick, B. Chamberland, D. P. Yang, Ch. Neidermayer, A. Golnik, E. Recknagel,M. Rossmanith, and A. Weidinger, Europhys. Lett. 5, 651 (1988).ADSCrossRefGoogle Scholar
  151. 136.
    J. M. Tranquada, J. Appl. Phys. 64, 6071 (1988).ADSCrossRefGoogle Scholar
  152. 137.
    J. B. Torrance, Y. Tokura, A. I. Nazzal, A. Bezinge, T. C Huang, and S. S. P. Parkin, Phys. Rev.Lett. 61, 1127(1988).ADSCrossRefGoogle Scholar
  153. 138.
    A. M. George, I. K. Gopalakrishnan, and M. D. Karkhanavla, Mater. Res. Bull. 9, 721 (1974).CrossRefGoogle Scholar
  154. 139.
    J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 661 (1995).CrossRefGoogle Scholar
  155. 140.
    J. G. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986)ADSCrossRefGoogle Scholar
  156. 140a.
    J. G. Bednorz, K. A. Müller, and M.Takashige, Science 236, 73 (1987).ADSCrossRefGoogle Scholar
  157. 141.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y Q. Wang,and C. W. Chu, Phys. Rev. Lett. 58, 908 (1987).ADSCrossRefGoogle Scholar
  158. 142.
    M. A. Subramanian, C. C. Torardi, J. C. Calabrese, J. Gopalakrishnan, K. J. Mornssey, T. R.Askew, R. B. Flippen, U. Chowdhry, and A. W. Sleight, Science 239, 1015 (1988).ADSCrossRefGoogle Scholar
  159. 143.
    F. London and H. London, Physica 2, 341 (1935).ADSMATHCrossRefGoogle Scholar
  160. 144.
    A. B. Pippard, Proc. R. Soc. (London) A 216, 547 (1953); M. Tinkham, Introduction to Superconductivity (Robert E. Krieger, Malabar, FL, 1980).ADSCrossRefGoogle Scholar
  161. 145.
    J. M. Tarascon, L. H. Greene, W. R. McKinnon, G. W. Hull, and T. H. Geballe, Science 235, 1373(1987).ADSCrossRefGoogle Scholar
  162. 146.
    R. J. Cava, B. Batlogg, R. B. van Dover, D. W. Murphy, S. Sunshine, T. Siegrist, J. P. Remeika,E. A. Reitman, S. Zahurak, and G. P. Espinosa, Phys. Rev. Lett. 58, 1676 (1987).ADSCrossRefGoogle Scholar
  163. 147.
    A. C. Westerheim, L. S. Yu-Jahnes, and A. C. Anderson, IEEE Trans. Magn. 27, 1001 (1991).ADSCrossRefGoogle Scholar
  164. 148.
    G. Shirane, Y. Endoh, R. J. Birgeneau, M. A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, and T. Murakami, Phys. Rev. Lett. 59, 1613 (1987).ADSCrossRefGoogle Scholar
  165. 149.
    D. C. Johnston, A. J. Jacobson, J. M. Newsam, J. T. Lewandowski, D. P. Goshorn, D. Xie, and W. B. Yelon, in: Chemistry of High-Temperature Superconductors, edited by D. L. Nelson, M. S.Whittingham, and T. F. George (American Chemical Society, Washington, DC, 1987), p. 136.CrossRefGoogle Scholar
  166. 150.
    B. Batlogg, R. J. Cava, C. H. Chen, G. Kourouklis, W. Weber, A. Jayaraman, A. E. White, K. T.Short, E. A. Rietman, L. W. Rupp, D. Werder, and S. M. Zahurak, in: Novel Superconductivity,edited by S. A. Wolf and V. Z. Kresin (Plenum Press, New York, 1987), p. 653.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Gerald F. Dionne
    • 1
  1. 1.Lincoln LaboratoryMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations