Skip to main content

From Neuron to Brain: Statistical Physics of the Nervous System

  • Chapter
Developments in Mathematical and Experimental Physics
  • 168 Accesses

Abstract

A common experimental neuroscience protocol is to record the single neuron activity in response to repeated stimulus presentations and analyze how this activity encodes for stimulus properties. Neurons are embedded in a large network and their response properties depend on the dynamical state of the network. I discuss how brain chemicals — neuromodulators — can dynamically change the coherence and frequency content of network activity; how the network coherence affects the neuronal response to current injection and how this can form the neural correlate for an important computation — gain modulation — that the brain performs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Salinas and P. Thier, Neuron 27 (2001) 15.

    Article  Google Scholar 

  2. E. Salinas and T. Sejnowski, Nat Rev Neurosci 2 (2001) 539.

    Article  Google Scholar 

  3. E. Salinas and T. Sejnowski, Neuroscientist 7 (2001) 430.

    Article  Google Scholar 

  4. C. McAdams and J. Maunsell, J. Neurosci. 19 (1999) 431.

    Google Scholar 

  5. S. Treue and J. Martinez Trujillo, Nature 399 (1999) 575.

    Article  ADS  Google Scholar 

  6. P. Steinmetz et al., Nature 404 (2000) 187.

    Article  ADS  Google Scholar 

  7. P. Dies, J. Reynolds, A. Rorie, and R. Desimone, Science 291 (2001) 1560.

    Article  ADS  Google Scholar 

  8. S. Treue, Trends Neurosci. 24 (2001) 295.

    Article  Google Scholar 

  9. P. Tiesinga, J. José, and T. Sejnowski, Phys. Rev. E62 (2000) 8413.

    ADS  Google Scholar 

  10. D. Pare and A. Destexhe, J. Neurophysiol. 81 (1999) 1531.

    Google Scholar 

  11. E. Salinas and T. Sejnowski, J. Neurosci. 20 (2000) 6193.

    Google Scholar 

  12. A. Destexhe, M. Rudolph, J.-M. Fellous, and T. Sejnowski, Neuroscience 107 (2001) 13.

    Article  Google Scholar 

  13. G. Shepherd, The synaptic organization of the brain (Oxford University Press, New York, 1998).

    Google Scholar 

  14. F. Chance and L. Abbott, Soc. Neurosci. Abstr. 26 (2000) 1064.

    Google Scholar 

  15. M. Shadlen and W. Newsome, J. Neurosci. 18 (1998) 3870.

    Google Scholar 

  16. S. Song, K. Miller, and L. Abbott, Nat. Neurosci. 3 (2000) 919.

    Article  Google Scholar 

  17. A. Burkitt, Biol. Cybern. 85 (2001) 247.

    Article  MATH  Google Scholar 

  18. E. Basar, C. Basar-Eroglu, S. Karakas, and M. Schurmann, Neurosci. Lett. 259 (1999) 165.

    Article  Google Scholar 

  19. A. Glass and R.. Riding, Biol. Psychol. 51 (1999) 23.

    Article  Google Scholar 

  20. C. Basar-Eroglu, E. Basar, T. Demiralp, and M. Schurmann, Int. J. PsychophysioL 13 (1992) 161.

    Article  Google Scholar 

  21. O. VinogradovaProg. Neurobiol. 45 (1995) 523.

    Article  Google Scholar 

  22. R. Ritz and T. Sejnowski, Curr. Opin. Neurobiol. 7 (1997) 536.

    Article  Google Scholar 

  23. W. Singer and C. Gray, Annu. Rev. Neurosci. 18 (1995) 555.

    Article  Google Scholar 

  24. D. McCormick, Prog. Neurobiol. 39 (1992) 337.

    Article  Google Scholar 

  25. M. Stewart and S. Fox, Trends Neurosci. 13 (1990) 163.

    Article  Google Scholar 

  26. L. Leung, Neurosci. Biobehay. Rev. 22 (1998) 275.

    Article  Google Scholar 

  27. F. Marrosu et al., Eur. J. Neurosci. 7 (1995) 358.

    Article  Google Scholar 

  28. J. Boguszewicz, B. Skrajny, J. Kohli, and S. Roth, Can. J. Physiol. Pharmacol. 74 (1996) 1322.

    Article  Google Scholar 

  29. J.-M. Fellous and T. Sejnowski, Hippocampus 10 (2000) 187.

    Article  Google Scholar 

  30. B. Bland, L. Colom, J. Konopacki, and S. Roth, Brain Res. 447 (1988) 364.

    Article  Google Scholar 

  31. J. Konopacki, M. Maclver, B. Bland, and S. Roth, Brain Res. 405 (1987) 196.

    Article  Google Scholar 

  32. B. MacVicar and F. Tse, J. Physiol. (Lond) 417 (1989) 197.

    Google Scholar 

  33. J. Williams and J. Kauer, J. Neurophysiol. 78 (1997) 2631.

    Google Scholar 

  34. A. Fisahn, F. Pike, E. Buhl, and O. Paulsen, Nature 394 (1998) 186.

    Article  ADS  Google Scholar 

  35. D. Madison, B. Lancaster, and R. Nicoll, J. Neurosci. 7 (1987) 733.

    Google Scholar 

  36. D. McCormick, Trends Neurosci. 12 (1989) 215.

    Article  Google Scholar 

  37. L. Leung and C. Yim, Brain Res. 553 (1991) 261.

    Article  Google Scholar 

  38. M. Hasselmo, Behay. Brain Res. 67 (1995) 1.

    Article  Google Scholar 

  39. M. Hasselmo, E. Schnell, and E. Barkai, J. Neurosci. 15 (1995) 5249.

    Google Scholar 

  40. M. Patil and M. Hasselmo, J. Neurophysiol. 81 (1999) 2103.

    Google Scholar 

  41. P. Tiesinga, J.-M. Fellous, J. José, and T. Sejnowski, Hippocampus 11 (2001) 251.

    Article  Google Scholar 

  42. X.-J. Wang and G. Buzsáki, J. Neurosci. 16 (1996) 6402.

    Google Scholar 

  43. J. White et al., J. Comput. Neurosci. 5 (1998) 5.

    Article  MATH  Google Scholar 

  44. P. Tiesinga and J. José, Network 11 (2000) 1.

    Article  MATH  Google Scholar 

  45. P. Tiesinga, J.-M. Fellous, J. José, and T. Sejnowski, Network 13 (2002) 41.

    MATH  Google Scholar 

  46. P. Tiesinga, J.-M. Fellous, J. José, and T. Sejnowski, Neurocomputing 38–40 (2001) 397.

    Article  Google Scholar 

  47. J. José et al., Soc. Neurosci. Abstr. 722.11 (2001).

    Google Scholar 

  48. P. Tiesinga et al., in preparation (2002).

    Google Scholar 

  49. A. Sharp, M. O’Neil, L. Abbott, E. Marder, Trends Neurosci. 16 (1993) 389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tiesinga, P.H.E. (2003). From Neuron to Brain: Statistical Physics of the Nervous System. In: Macias, A., Uribe, F., Diaz, E. (eds) Developments in Mathematical and Experimental Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0207-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0207-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4965-5

  • Online ISBN: 978-1-4615-0207-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics