Advertisement

Physiological Oxygen Measurements Using Oxygen Electrodes

  • David K. Harrison
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 510)

Abstract

It was the development by Clark in 1956 of the membrane-covered “integral” electrode that opened the field for truly physiological in vivo - and indeed clinical - measurements of oxygen partial pressure in blood and tissue. Since then, much of our knowledge about oxygen transport to tissue has been gained by the use of polarographic oxygen (and hydrogen) electrodes — many of them of the Clark-type. It is not possible in this paper to examine all of these applications and the reader is referred to a comprehensive review by Ltibbers.

Keywords

Oxygen Partial Pressure Oxygen Supply Oxygen Electrode Critical Limb Ischaemia Dermal Papilla 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. C. Clark, Monitoring and control of blood and tissue oxygen, Trans. Am. Soc. Artif Intern. Organs 2:4148 (1956).Google Scholar
  2. 2.
    D. W. Lubbers, Oxygen electrodes and optodes and their application in vivo, Adv. Exp. Med. Biol. 388:13-34 (1996).CrossRefGoogle Scholar
  3. 3.
    R. Huch, D. W. Lubbers and A. Huch, in: Oxygen Measurements in Medicine and Biology, edited by J. P. Payne and D. W. Hill (Butterworths, London, 1975) pp. 121–138.Google Scholar
  4. 4.
    R. Carter and S. Banham, Use of transcutaneous oxygen and carbon dioxide tensions for assessing indices of gas exchange during exercise testing, Resp. Med. 94:350–355 (2000).CrossRefGoogle Scholar
  5. 5.
    M. Mars, A. McKune and J. V. Robbs, A comparison of laser Doppler fluxmetry and transcutaneous oxygen pressure measurement in the dysvascular patient requiring amputation, Eur. J. Vasc. Endovasc. Surg.. 16:53–58 (1998).PubMedCrossRefGoogle Scholar
  6. 6.
    H. Baumgärtl, W. Zimelka and D. Lubbers, Evaluation of p02 profiles to describe the oxygen pressure field within the tissue, Comp. Biochem. Physiol. (In Press).Google Scholar
  7. 7.
    P. Vaupel, K. Schlenger, C. Knoop and M. Hockel, Oxygenation in human tumors: Evaluation of tissue oxygen distribution in breast cancers by computerized 02 tension measurement, Cancer Res., 51:3316–3322 (1991).PubMedGoogle Scholar
  8. 8.
    M. Kessler and D. W. Lubbers, Aufbau und Anwendungsmöglichkeiten verschiedener P02-Elektroden, Pfug. Arch. ges. Physiol. 291:R82 (1966).Google Scholar
  9. 9.
    M. Kessler, D. K. Harrison and J. Höper, in: Microcirculatory Technology, edited by C. H. Baker and W. F. Nastuk (Academic Press, New York, 1986) pp. 391–425.Google Scholar
  10. 10.
    D. K. Harrison, Catchment depths of surface electrodes for H2 and 02 in tissue, Adv. Exp. Med. Biol. 411:551–6 (1997).PubMedCrossRefGoogle Scholar
  11. 11.
    M. Kessler, J. Höper, D. K. Harrison, K. Skolasinska, W. P. Klövekom, F. Sebening, H. J. Volkholz, I. Beir, C. Kernbach, V. Rettig and H. Richter, Tissue 02 supply under normal and pathological conditions, Adv. Exp. Med. Biol. 169:69–80 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    D. K. Harrison, M. Kessler and S. K. Knauf, Regulation of capillary blood flow and oxygen supply in skeletal muscle in dogs during hypoxaemia, J Physiol. (Lond.) 420: 431–446 (1989).Google Scholar
  13. 13.
    D. K. Harrison, M. Kessler, S. Birkenhake and S. K Knauf, Local oxygen supply and blood flow regulation in contracting muscle in dogs and rabbits../. Physiol. (Lond.) 422:227–243 (1990).Google Scholar
  14. 14.
    D. K. Harrison, P. T. McCollum, D. J. Newton, P. Hickman and A. S. Jain, Amputation level assessment using lightguide spectrophotometry, Prosthet. Orthot. Int. 19:139–147 (1995).PubMedGoogle Scholar
  15. 15.
    P. T. McCollum, V. A. Spence and W. F. Walker, Amputation for peripheral vascular disease: the case for level selection, Br. J Surg. 75:1193-1195 (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Baumgartl, A. M. Ehrly, K. Saeger-Lorenz and D. Lubbers, in: Clinical Oxygen Pressure Measurement, edited by A. M. Ehrly, J. Hauss and R. Huch (Springer-Verlag, Berlin, 1987), pp. 121–128.CrossRefGoogle Scholar
  17. 17.
    W. Wang, C. P. Winlove and C. C. Michel, Distribution of oxygen partial pressure (PO2) in dermal papillae of human finger nailfolds,J Vasc. Res. 38:399 (2001).Google Scholar
  18. 18.
    G. Holst, T. Köster, E. Voges andD. W. Lubbers, FLOX - an oxygen-flux-measuring system using a phase-modulation method to evaluate the oxygen-dependent fluorescence lifetime, Sens. and Actuators B 29:231–239 (1995).CrossRefGoogle Scholar
  19. 19.
    M. Stucker, P. Altmeyer, A. Struk, K. Hoffmann, L. Schulze, A. Röchling and D. W. Lubbers, The transepidermal oxygen flux from the environmert is in balance with the capillary oxygen supply, J. Invest. Dermatol. 114:533-540 (2000).PubMedCrossRefGoogle Scholar
  20. 20.
    M. Stucker, A. Struk, P. Altmeyer, M. Herde, H. Baumgartl and D. W. Lubbers, The cutaneous uptake of atmospheric oxygen contributes significantly to the oxygen supply of human epidermis, J. Physiol. (Lond.) 538: 985–994 (2002).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • David K. Harrison
    • 1
  1. 1.Regional Medical Physics DepartmentDurham Unit, University Hospital of North DurhamDurhamUK

Personalised recommendations