Skip to main content

Abstract

The Navier-Stokes equations for a flow associated to a logarithmic spiral in an incompressible, viscous, planar fluid, become a non linear ordinary fourth order differential equation for a Stokes stream function. After having made a first integration, we found that the resulting equation is the same as the one associated to the movement of a particle subjected both to a cubic potential and to a friction force proportional to the velocity. This allows us to find a new integral in the particular case that corresponds to the frictionless particle. Use is made of the fact that the independent coordinate, in the case of a fluid, has boundary conditions that require periodic restrictions. This fact is also used in the general case, that for the particle includes friction, to find the general solution for the fluid and justify its uniqueness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oseen C. W., Exakte Lösungen der hydrodynamischen Differentialgleichungen, Arkiv för Math. 11.20 N14 (1927) 1-24.

    Google Scholar 

  2. Oseen C. W., Exakte Lösungen der hydrodynamischen Differentialgleichungen, Arkiv för Math. 1t.20 N22 (1928) 1-9.

    Google Scholar 

  3. M. A.Rosenblatt , Solutions exactes des équations du mouvement des li???uides visqueux, Mem. des Sci. Math. 72 (1935) 21-28.

    Google Scholar 

  4. Birkhoff G., Hydrodynamics, Dover, (1955) p.124.

    Google Scholar 

  5. Jeffrey A., Kakutami T., Weak nonlinear dispersive waves: a discussion centered around the Korteweg-de Vries equation SIAM Rev. 14 (1972) 582-643.

    MATH  Google Scholar 

  6. Lamb Jr. G. L., Elements of Soliton Theory, John Wiley & Sons, New York, 1980 pp. 113-114.

    Google Scholar 

  7. Piña E., On the symmetric Lagrange's Top, Rev. Mex. Fís. 39 (1993) 10-31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piña, E., de la Selva, S.M.T. (2003). The Oseen’s Spiral Flow. In: Macias, A., Uribe, F., Diaz, E. (eds) Developments in Mathematical and Experimental Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0199-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0199-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4963-1

  • Online ISBN: 978-1-4615-0199-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics