Advertisement

Hydrodynamics, Grad’s Moments Method and the Structure Of Shock Waves

  • F. J. Uribe
  • R. M. Velasco
  • Leopoldo S. Garcia-Colin

Abstract

The propagation of a plane shock wave through a monatomic gas is considered. A study based on Grad's thirteen moment approximation to the solution of Boltzmann's equation is performed for a stationary shock. Comparison of the results obtained with two different sets of dynamical variables leads to some inconsistencies. In fact, what we exemplify is that Grad's method does not uniquely determines the underlying dynamical systems of equations for each choice of dynamical variables. The consequences of this incosistency are seen in the shock wave problem.

Keywords

Boltzmann Equation Chapman-Enskog Method Grad's Moments Method Kinetic Theory Shock Waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giovanni P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer Tracts in Natural Philosophy Vol. 38, corrected second printing, (Springer, New York, 1998)Google Scholar
  2. 2.
    P. Holmes, J. L. Lumley and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, (Cambridge University Press, Cambridge, 1998)MATHGoogle Scholar
  3. 3.
    G. Pham-Van-Diep, D. A. Erwin and E. P. Muntz, Testing continuum descriptions of low-Mach-number shock structures, J. Fluid Mech. 232, 403 (1991).ADSMATHCrossRefGoogle Scholar
  4. 4.
    H. Alsmeyer, Density profiles in argon and nitrogen shock waves by the absorption of an electron beam, J. Fluid. Mech. 74, 497(1976)ADSCrossRefGoogle Scholar
  5. 5.
    F. J. Uribe, R. M. Velasco, L. S. García-Colín and E. Díaz-Herrera, Shock wave profiles in the Burnett approximation, Phys. Rev. E 62, 6648 (2000).Google Scholar
  6. 6.
    F. J. Uribe and A. L. Garcia, Burnett description for plane Poiseuille flow, Phys. Rev. E 60, 4063 (1999).Google Scholar
  7. 7.
    S. Chapman and T. G. Cowling, The Mathematical Theory of Non- Uniform Gases (Cambridge University Press, Cambridge, 1970, 1990).Google Scholar
  8. 8.
    C. Truesdell and R. G. Muncaster, Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, (Academic Press, London, 1980).Google Scholar
  9. 9.
    Charles L. Fefferman, Existence & Smoothness of the Navier-Stokes equations, http://www.claymath.org/prizeproblems/navierstokes.htm.Google Scholar
  10. 10.
    H. Grad, On the Kinetic Theory of Rarefied Gases, Comm. Pure Appl. Math. 2, 331 (1949).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    H. Grad, The Profile of a steady Plane Shock Wave, Comm. Pure Appl. Math. V, 257 (1952).MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. L. Holian, C. W. Patterson, M. Mareschal and E. Salomons, Modeling shock waves in an ideal gas: Going beyond the Navier-Stokes level, Phys. Rev. E 47, R24 (1993).Google Scholar
  13. 13.
    D. Gilbarg and D. Paolucci, The Structure of Shock Waves in the Continuum Theory of Fluids, J. Rat. Mech. Analysis 2, 617 (1953).MathSciNetMATHGoogle Scholar
  14. 14.
    F. J. Uribe, R. M. Velasco and L. S. García-Colín, Two kinetic temperature description for shock waves, Phys. Rev. E 58, 3209 (1998).Google Scholar
  15. 15.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations, (Springer-Verlag, New York, 1994).MATHCrossRefGoogle Scholar
  16. 16.
    G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, (Clarendon, Oxford, 1994).Google Scholar
  17. 17.
    F. J. Uribe and L. S. García-Colín, Nonlinear viscosity and Grad's method, Phys. Rev. E 60, 4052 (1999).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • F. J. Uribe
    • 1
  • R. M. Velasco
    • 1
  • Leopoldo S. Garcia-Colin
    • 1
    • 2
  1. 1.Departamento de FísicaUniversidad Autónoma Metropolitana - IztapalapaMéxico D. F.México
  2. 2.El Colegio NationalMéxico D. F.México

Personalised recommendations