Advertisement

DNA Evolution as a Dynamical System: A Physicalist Perspective

  • Pedro Miramontes

Abstract

There are clues indicating that DNA evolution is not a random process followed by a selecting filter. In this paper, we seek to propose a starting point to model DNA evolution as a dynamical system within the framework of Cellular Automata.

Keywords

DNA Evolution Dynamical System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dawkins, The Blind Watchmaker, (Norton, New York, 1996)Google Scholar
  2. 2.
    M. Kimura,The Neutral Theory of Molecular Evolution, (Cambridge University Press, Cambridge, 1983).MATHGoogle Scholar
  3. 3.
    M.V. Volkenstein,Biosys 20, 289 (1987).CrossRefGoogle Scholar
  4. 4.
    S. Kauffman,The Origins of Order, (Oxford University Press, New York, 1993).MATHGoogle Scholar
  5. 5.
    G. Nicolis, in:The New Physics, ed. P. Davis, (Cambridge University Press, 1989).Google Scholar
  6. 6.
    W. Li,Computer & Chemistry 21, 257 (1997).CrossRefGoogle Scholar
  7. 7.
    B. Audit, C. Thermes, C. Vaillant, Y. d'Aubenton-Carafa, J.F. Muzy and A. Arneodo,Phys Rev Lett 86, 241 (2001).CrossRefGoogle Scholar
  8. 8.
    W. li and K. Kaneko,Europhys Lett 17, 655 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    A. Bershadskii,Phys Lett A 284, 136 (2001).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    P. Miramontes, L. Medrano, C. Cerpa, R. Cedergren, G. Ferbeyre and G. Cocho,J Mol Evol 40, 698 (1995).CrossRefGoogle Scholar
  11. 11.
    S. Wright,Proc Natl Acad Sci USA 58, 452 (1967).CrossRefGoogle Scholar
  12. 12.
    P. Padilla and P. Miramontes,Concepts in evolutionary biology: a dynamical systems approach. Submitted.Google Scholar
  13. 13.
    Ch. Burks and D. Farmer,Physica 10D, 157 (1984).MathSciNetADSGoogle Scholar
  14. 14.
    S. Wolfram,Cellular automata and complexity, (Addison-Wesley, New York, 1994).MATHGoogle Scholar
  15. 15.
    R. Mansilla and G. Cocho,Complex Systems,12, 207 (2000).MathSciNetMATHGoogle Scholar
  16. 16.
    K.J. Breslauer, R. Prank, H. Blocker and L.A. Marky (Proc Natl Acad Sci USA, 374611 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Pedro Miramontes
    • 1
  1. 1.Department of Mathematics, Faculty of SciencesUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations