Skip to main content
  • 138 Accesses

Abstract

The paper elucidates the physical basis of experimental results on superluminal signal velocity. It will be made plausible that superluminal signals do not violate the principle of causality but they can shorten the vacuum time span between cause and effect. The causal behavior is based on the property that a physical signal has a finite duration as a result of its frequency band limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Enders and G. Nimtz, J. Phys. I (Prance) 2, 1693 (1992)

    Google Scholar 

  2. G. Nimtz and W. Heitmann, Prog. Quantum Electronics 21, 81 (1997)

    Article  ADS  Google Scholar 

  3. E. Desurvivre, Scientific American 266, 96 (January 1992)

    Google Scholar 

  4. L. Brillouin, Wave propagation and group velocity, Academic Press, New York (1960)

    MATH  Google Scholar 

  5. A. Papoulis, The Fourier Integral And Its Applications, Sees. 7.5 and 7.6, McGraw-Hill, New York (1962)

    MATH  Google Scholar 

  6. E. Merzbacher, Quantum Mechanics, 2nd ed., John Wiley & Sons, New York (1970)

    Google Scholar 

  7. G. Nimtz, General Relativity and Gravitation, 31, 737 (1999)

    Article  ADS  Google Scholar 

  8. A. Einstein, Ann.Phys. (Leipzig) 17, 891 (1905)

    ADS  MATH  Google Scholar 

  9. Albert Einstein, The Collected Papers, Vol.5, Princeton University Press (1993)

    Google Scholar 

  10. R. Sexl und H. Schmidt, Raum-Zeit-Relativität, vieweg studium, Braunschweig (1978)

    Google Scholar 

  11. R. U. Sexl and H. K. Urbantke, Relativity, Groups, Particles, Springer, Wien, NewYork 2001

    MATH  Google Scholar 

  12. R. Chiao and A. Steinberg, Progress in Optics XXXVII, 345 (1997)

    Article  Google Scholar 

  13. H. Goenner, Ann. Phys. (Leipzig) 7, 774 (1998)

    Article  MATH  Google Scholar 

  14. E. Recami, Int. J. of Modern Physics, A 15, 2793 (2000)

    MathSciNet  ADS  Google Scholar 

  15. E. Recami, Consiglio Nazionale delle Ricerche Roma, Monografie Scientifiche, Serie Scienze Fisiche (2001), Int. Conf. Napoli October 3 - 5, 2000, Time's Arrows, Quantum Measurement and Superluminal Behavior, Eds. D. Mugnani, A. Ranfagni, L. Schulman, p. 17

    Google Scholar 

  16. P. Mittelstaedt, Eur. Phys. J. B 13, 353 (2000)

    ADS  Google Scholar 

  17. G. Nimtz, A. Enders, and H. Spieker, J. Phys. I. (France) 4, 565 (1994)

    Article  Google Scholar 

  18. B. Segard and B. Macke, Phys. Letters 109A, 213 (1985)

    ADS  Google Scholar 

  19. L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000)

    Article  ADS  Google Scholar 

  20. G. Nimtz, Eur. Phys. J. B 7, 523 (1999)

    ADS  Google Scholar 

  21. F. Low, Annalen der Physik (Leipzig) 7, 660 (1998)

    Article  ADS  Google Scholar 

  22. H. D. Luke, IEEE Commun. Magazine, April 1999, p. 106

    Google Scholar 

  23. C. E. Shannon, Bell Syst. Tech. J. 27, 379 (1948)

    MathSciNet  MATH  Google Scholar 

  24. C. E. Shannon, Proc. IRE 37,10 (1949)

    Article  MathSciNet  Google Scholar 

  25. Th. Hartman, J. Appl. Phys. 33, 3427 (1962)

    Article  ADS  Google Scholar 

  26. M. Campi and M. Cohen, IEEE Trans, on Electron Devices ED-17, 157 (1970)

    Article  Google Scholar 

  27. A. Enders and G. Nimtz, Phys. Rev. E 48, 632 (1994)

    ADS  Google Scholar 

  28. Ch. Spielmann et al., Phys. Rev. Letters 73, 2308 (1994)

    Article  ADS  Google Scholar 

  29. A. Haibel, G. Nimtz, and A. A. Stahlhofen, Phys. Rev. E 63, 047601 (2001)

    ADS  Google Scholar 

  30. C. K. Cargnilia and L. Mandel, Phys. Rev. D3, 280 (1971)

    ADS  Google Scholar 

  31. V. Olkhovsky, Consiglio Nazionale delle Ricerche Roma, Monografie Scientifiche, Serie Scienze Fisiche (2001), Int. Conf. Napoli October 3 - 5, 2000, Time's Arrows, Quantum Measurement and Superluminal Behavior, Eds. D. Mugnani, A. Ranfagni, L. Schulman, p. 173

    Google Scholar 

  32. G. Nimtz and A. Haibel, Los Alamos Eprint Archive physics/0103073

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nimtz, G. (2003). Violate Superluminal Signals Causality?. In: Macias, A., Uribe, F., Diaz, E. (eds) Developments in Mathematical and Experimental Physics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0199-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0199-2_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4963-1

  • Online ISBN: 978-1-4615-0199-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics