The P21-Activated Protein Kinases (Paks) Receive And Integrate Messages From A Variety of Signaling Pathways

  • Jian P. Lian
  • Lisa Crossley
  • Qian Zhan
  • RiYun Huang
  • Dwight Robinson
  • John A. Badwey
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)

Abstract

Neutrophils stimulated with leukotriene B4, platelet activating factor or a variety of other chemoattractants that bind to G-protein coupled serpentine receptors exhibit rapid activation of two p21-activated kinases (Paks) with molecular masses of ca 63 and 69 kDa (y-and a- Pak)1.2.3 The 63 and 69 kDa Paks are ser/thr protein kinases that preferentially recognize the consensus sequence - (K/R)RX(S/T)- where X can be an acidic, basic or neutral amino acid4. These kinases can be conveniently assayed in neutrophils by their ability to undergo renaturation after separation by SDS/PAGE and undergoing autophosphorylation5 or catalyzing the phosphorylation of a peptide substrate fixed within a gel that corresponds to amino acid residues 297-331 of the 47 kDa subunit of the NADPH-oxidase complex (p47-phox) 1 .Histone H4 can also serve as a highly specific substrate for these enzymes in “in gel” assays5.

Keywords

Tyrosine Serine Saccharomyces Guanine Ceramide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Ding, and J.A. Badwey, Stimulation of neutropils with a chemoattractant activates several novel protein kinases that can catalyze the phosphorylation of peptides derived from p47-phox and MARKS, J. Biol. Chem. 268:17326 (1993).PubMedGoogle Scholar
  2. 2.
    J. Ding, U.G. Knaus, J.P. Lian, G.M. Bokoch, and J.A. Badwey, The renaturable 69 and 63 kDa protein kinases that undergo rapid activation in chemoattractant-stimulated guinea pig neutrophils are p21-activated kinases (Paks), J. Biol. Chem. 271:24869 (1996).PubMedCrossRefGoogle Scholar
  3. 3.
    R. Huang, J.P. Lian, D. Robinson, and J.A. Badwey, Neutrophils stimulated with a variety of chemoattractants exhibit rapid activation of p21-activated kinases (Paks): separate signals are required for activation and inactivation of Paks, Mol. Cell. Biol. 18:7130 (1998).PubMedCentralPubMedGoogle Scholar
  4. 4.
    P.T.Tuazon, W.C.Spanos, E.L.Grump, C.A.Monnig,andJ.A. Traugh ,Determinants for substrate phosphorylation by p21-activated protein kinase (1-Pak),Biochemistry 36:16059 (1997)PubMedCrossRefGoogle Scholar
  5. 5.
    J. Ding, and J.A. Badwey, Neutrophils stimulated with a chemotactic peptide or a phorbol ester exhibit different alterations in activities of a battery of protein kinases, J. Biol. Chem. 268:5234 (1993).PubMedGoogle Scholar
  6. 6.
    E. Manser, T. Leung, H. Salihuddin, Z.-S. Zhao, and L. Lim, A brain serine/threonine protein kinase activated by Cdc42 and Rac 1, Nature. 367:40 (1994).PubMedCrossRefGoogle Scholar
  7. 7.
    P.D. Burbelo, D. Drechsel, and A. Hall, A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases, J.Biol. Chem. 270:29071 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Gatti, Z. Huang, P.T. Tuazon, and J.A. Traugh, Multisite autophosphorylation of p21-activated protein kinase ‘y-Pak as a function of activation, J.Biol.Chem. 274: 8022 (1999).PubMedCrossRefGoogle Scholar
  9. 9.
    G.E. Benner, P.B. Dennis, and R.A. Masarachia, Activation of an S6/H4 kinase (Pak 65) from human placenta by intramolecular and intermolecular autophosphorylation, J. Biol. Chem. 270:21121 (1995).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Leeuw, C. Wu, J.D. Schrag, M.Whiteway, D.Y. Thomas, andE. Leberer, Interaction of a G-protein (3-subunit with a conserved sequence in Ste20/Pak family protein kinasesNature 391: 191 (1998).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Manser, T.-H. Loo, C.-G. Koh, Z.-S. Zhao, X.-Q. Chen, L. Tan, I. Tan, T. Leung, and L. Lim, Pak kinases are directly coupled to the PIX family of nucleotide exchange factors, Mol. Cell 1:183 (1998).Google Scholar
  12. 12.
    G.M. Bokoch, Y. Wang, B.P. Bohl, M.A. Sells, L.A. Quilliam, and U.G. Knaus, Interaction of the Nck adapter protein with p21-activated kinase (Pakl), J. Biol. Chem. 271:5746 (1996).Google Scholar
  13. 13.
    C.E. Turner.,M.C. Brown, J.A. Perrotta, M.C. Reidy, N. Nikolopoulos, A.R. McDonald, S. Bagrodia, S. Thomas, and P.S. Leventhal, Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling, J. Cell. Biol. 145: 851 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    R.S. Westphal, R.L. Coffee, Jr.A. Marotta, S.L. Pelech, and B.E. Wadzinski, Identification of kinasephosphatase signaling modules composed of p70 S6 kinase-protein phosphatases 2A (PP2A) and p21-activated kinase-PP2A, J. Biol. Chem. 247:687 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Nikolick, M.M. Chou, W. Lu, B.J. Mayer, and L.-H. Tsai, The p35/cdk5 kinase is a neuron-specific Rac effector that inhibits Pakl activity, Nature 395:194 (1998).CrossRefGoogle Scholar
  16. 16.
    S. Zhang, J. Han, M.A. Sells, J. Chernoff, U.G. Knaus, R.J. Ulevitch, and G.M. Bokoch, Rho family GTPases regulate p38 MAP kinase through the downstream mediator Pakl, J. Biol. Chem. 270:23934 (1995).PubMedCrossRefGoogle Scholar
  17. 17.
    J.A. Frost, H. Steen, P. Shapiro, T. Lewis, N. Ahn, P.E. Shaw, and M.H.Cobb, Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins, EMBO J. 16:6426 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    A.J. King, H. Sun, B. Diaz, D. Barnard, W. Miao, S. Bagrodia, and M. Marshall, The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338, Nature 396:180 (1998).PubMedCrossRefGoogle Scholar
  19. 19.
    Y.-L. Zu, J. Qi, A. Gilchrist, G.A. Fernandez, D. Vasquez-Abad, D.L. Kreutzer, C.-K. Huang, and R.I. Sha’afi, p38-Mitogen activated protein kinase activation is required for human neutrophil function triggered by TNF-a or fMLP stimulation, J. Immunol. 160: 1982 (1998).PubMedGoogle Scholar
  20. 20.
    J.A. Frost, A. Khokhlatchev, S. Stippec, M.A. White, and M.H. Cobb, Differential effects of PAKIactivating mutations reveal activity-dependent and independent effects on cytoskeletal regulation, J. Biol. Chem. 273:28191 (1998).PubMedCrossRefGoogle Scholar
  21. 21.
    M.A. Sells, J.T. Boyd, and J. Chernoff, p21-Activated kinasel (Paksl) regulates cell motility in mammalian fibroblasts, J. Cell. Biol. 145:837 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    S.P.Holly, and K.J. Blumer, Pak-family kinases regulate cell and actin polarization throughout the cell cycle of saccharomyces cerevisio,J. Cell. Biol. 147:845 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    W.B. Kiosses, R.H. Daniels, C. Otey, G.M. Bokoch, and M.A. Schwartz, A role for p21-activated kinase in endothelial cell migration, J. Cell. Biol. 147:831 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    L.C. Sanders, F. Matsumura, G.M.Bokoch, and P. de Lanerolle, Inhibition of myosin light chain kinase by p21-activated kinase, Science 283:2083 (1999).PubMedCrossRefGoogle Scholar
  25. 25.
    J.E. Van Eyk, D.K. Arrell, D.B. Foster, J.D. Strauss, T.Y.K. Heinonen, E. Furmoniak-Kazmierczak, G.P. Cote, and A.S. Mak, Different molecular mechanisms for Rho family GTPase-dependent, Ca2 -independent contraction of smooth muscle, J.Biol.Chem. 273:23433 (1998).PubMedCrossRefGoogle Scholar
  26. 26.
    J. Ding, C.J. Vlahos, R. Liu, R.F. Brown, and J.A. Badwey, Antagonists of phosphatidylinositol 3-kinase block activation of several novel protein kinases in neutrophils, J. Biol. Chem. 270:11684 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Okada, O. Hazeki, M. Ui, and T. Katada, Synergistic activation of PtdIns 3-kinase by tyrosinephosphorylated peptide and 13y-subunits of GTP-binding proteins, Biochem. J. 317:475 (1996).PubMedCentralPubMedGoogle Scholar
  28. 28.
    A. Toker, and L.C. Cantley, Signalling through the lipid products of phosphoinositide-3-OH kinase, Nature 387:673 (1997).PubMedCrossRefGoogle Scholar
  29. 29.
    K. Missy, V. Van Pouke, P. Raynal, C. Viala, G. Mauco, M. Plantavid, H. Chap, and B. Payrastie, Lipid products of phosphoinositide-3-kinase interact with Rac1 GTPase and stimulated GDP dissociation, J. Biol. Chem. 273:30279 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    V. Bernard, B.P. Bohl, and G.M. Bokoch, Characterization of Rac and Cdc42 activation in chemoattractant-stimulated human neutrophils using a novel assay for active GTPases, J. Biol. Chem. 274:13198 (1999).CrossRefGoogle Scholar
  31. 31.
    Z. Li, H. Jiang, W. Xie, Z. Zhang, A.V. Smrcka, and D. Wu, Roles of PLC-02 and -03 and PI3Ky in chemoattractant-mediated signal transduction, Science 287:1046 (2000).PubMedCrossRefGoogle Scholar
  32. 32.
    J.P. Lian, R.-Y. Huang, D.R. Robinson, and I.A. Badwey, Products of spingolipid catablism block activation of the p21-activated protein kinases in neutrophils, J. lmmunol. 161:4375 (1998).Google Scholar
  33. 33.
    A. Abousalham, C. Liossis, L. O’Brien and D.N. Brindley, Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and Rho A, J. Biol. Chem. 272:1069 (1997).PubMedCrossRefGoogle Scholar
  34. 34.
    E. Wilson, E. Wang, R.E. Mullins, D.J. Uhlinger, D.C. Liotta, J.D. Lambeth, and A. H. Merrill, Jr., Modulation of free sphingosine levels in human neutrophils by phorbol esters and other factors, J. Biol. Chem. 263:9304 (1998).Google Scholar
  35. 35.
    Z. Yang, M. Costanzo, D.W. Golde, and R.N. Kolesnick, Tumor necrosis factor activation of sphingomyelin pathway signals nuclear translocation of xß translocation in intact HL60 cells, J. Biol. Chem. 268:20520 (1993).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jian P. Lian
    • 1
  • Lisa Crossley
    • 1
  • Qian Zhan
    • 1
  • RiYun Huang
    • 2
  • Dwight Robinson
    • 2
  • John A. Badwey
    • 1
  1. 1.Center for Experimental Therapeutics and Reperfusion Injury, Department of AnesthesiaBrigham and Women’s Hospital and the Harvard Medical SchoolBoston
  2. 2.Arthritis UnitMassachusetts General HospitalBoston

Personalised recommendations