Cyclooxygenase-2: A Molecular Target For Chemoprevention Of Epithelial Tumors Of Skin And Colon

  • K. Müller-Decker
  • S. Charyalertsak
  • C. Albert
  • G. Reinerth
  • F. Marks
  • G. Fürstenberger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)

Abstract

Numerous epidemiological studies have found a reduced risk to develop colorectal cancer of persons with a regular intake of aspirin or other non-steroidal antiinflammatory drugs (NSAIDs). Clinical trials with NSAIDs in patients suffering from Familial Adenomatous Poliposis Coli (FAP) due to a germline mutation in the APC-tumor suppressor gene have clearly shown a regression of already existing colorectal adenomas`. Furthermore, animal models of colon and skin cancer have demonstrated a reduction in tumor multiplicity and incidence by a continuous application of NSAIDs, such as aspirin, sulindac3indomethacin4piroxicam5SC-581256Celecoxib’, (and our own unpublished observation), and MF-tricyclic8. Experimental colon carcinogenesis was studied in the azoxymethane-treated rat and in Min mice, which carry a heterozygous germline deletion in the APC-gene and spontaneously develop adenomas throughout the intestinal tract. Squamous cell carcinogenesis has been studied predominantly in mouse skin. Here, tumorigenesis is initiated by a single mutation of the cellular Ha-ras gene, induced by exposure to a low dose of the carcinogen dimethyl-7,12-benz(a)anthracene. Initiated epidermal keratinocytes grow into macroscopically visible tumors only upon repeated treatment with tumor promoters such as the phorbolester TPA. Most of the papillomas regress, but some of them progress into carcinomas in the absence of any further treatment.

Keywords

Adenoma Aspirin Prostaglandin Paraffin Indomethacin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.E. Smalley, and R.N. DuBois, Colorectal cancer and nonsteroidal anti-inflammatory drugs.Adv. Pharmacol.39:1 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    C.J. Barnes, and M. Lee, Chemoprevention of spontaneous intestinal adenomas in the adenomatous polyposis colt min mouse model with aspirin.Gastroenterol114:873 (1998).CrossRefGoogle Scholar
  3. 3.
    V.R. Chinthalapally, A. Rivenson, B. Simi, E. Zang, G. Kelloff, V. Steele, and B.S.Reddy, Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent.Cancer Res55:1464 (1995).Google Scholar
  4. 4.
    G. Fürstenberger, M. Gross, and F. Marks, Eicosanoids and multistage carcinogenesis in NMRI mouse skin: Role of prostaglandin E and F in conversion (first stage of tumor promotion) and promotion (second stage of tumor promotion).Carcinogenesis10:91 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    R.F. Jacoby, D.J. Marshall, M.A. Newton, K. Novakovic, K. Tutsch, C.E. Cole, R.A. Lubet RA, et al., Chemoprevention of spontaneous intestinal adenomas in the ApcM“ mouse model by the nonsteroidal anti-inflammatory drug piroxicam.Cancer Res.56: 710 (1996).PubMedGoogle Scholar
  6. 6.
    K. Müller-Decker, A. Kopp-Schneider, F. Marks, K. Seibert, and G. Fürstenberger, Localization of prostaglandin H synthase isoenzymes in murine epidermal tumors: suppression of skin tumor promotion by COX-2 inhibition.Molec. Carc.23:36 (1998).CrossRefGoogle Scholar
  7. 7.
    S. Fischer, H.H. Lo, G.B. Gordon, K. Seibert, G. Kelloff, R.A. Lubet, and C.J. Conti, Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, and indomethacin against ultraviolet light-induced skin carcinogenesis.Molec. Carc.25:231 (1999).CrossRefGoogle Scholar
  8. 8.
    M. Oshima, J.E. Dinchuk, S.L. Kargman, H. Oshima, B. Hancock, E. Kwong, J.M. Trzaskos, J. F. Evans, and M.M. Taketo, Suppression of intestinal poliposis in Apc 716 knockout mice by inhibition of cyclooxygenase 2 (COX-2).Cell87:803 (1996).PubMedCrossRefGoogle Scholar
  9. 9.
    J.R. Vane, Y.S. Bakhle, and R.M. Botting, Cyclooxygenases 1 and 2.Annu. Rev. Pha. macol.38:97 (1998).CrossRefGoogle Scholar
  10. 10.
    S. Chariyalertsak, V. Sirikulchayanonta, D. Mayer, A. Kopp-Schneider, G. Fürstenberger, F. Marks, and K. Müller-Decker, Aberrant cyclooxygenase isozyme expression in human intrahepatic cholangiocarcinoma.Gutaccepted 2000.Google Scholar
  11. 11.
    K. Müller-Decker, C. Albert, T. Lukanov, G. Winde, F. Marks, and G. Fürstenberger. Cellular localization of cyclo-oxygenase isozymes in Crohn’s disease and colorectal cancer.Int. J. Colorectal Dis.14:212 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    K. Müller-Decker, K. Scholz, F. Marks, and G. Fürstenberger, Differential expression of prostaglandin H synthase isoenzymes during multistage carcinogenesis in mouse epidermis.Molec. Carc.12:31 (1995).CrossRefGoogle Scholar
  13. 13.
    K. Müller-Decker, G. Reinerth, P. Krieg, R. Zimmermann, H. Heise, C. Bayerl, F. Marks, and G. Fürstenberger, Prostaglandin H synthase isoenzyme expression in normal and neoplastic human skin.Int. J. Cancer82:648 (1999).PubMedCrossRefGoogle Scholar
  14. 14.
    S.Y. Buckman, A. Gresham, P. Hale, G. Hruza, J. Anast, J. Masferrer, and A.P. Pentland, COX-2 expression is induced by UVB exposure in human skin: implications for development of cancer.Carcinogenesis19:723 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Kawamori, C.V. Rao, K. Seibert, B.S.Reddy, Chemopreventive activity of Celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis.Cancer Res.58:409 (1998).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • K. Müller-Decker
    • 1
  • S. Charyalertsak
    • 1
  • C. Albert
    • 1
  • G. Reinerth
    • 1
  • F. Marks
    • 1
  • G. Fürstenberger
    • 1
  1. 1.German Cancer Research CenterResearch Program Tumor Cell RegulationHeidelberg

Personalised recommendations