Group IV Cytosolic Phospholipase A2(Pla2) Function:Insights from the Knockout Mouse

  • Joseph V. Bonventre
  • Adam Sapirstein
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)


The phospholipases A2 (PLA2s) comprise a growing enzyme superfamily1. PLA2s hydrolyze ester linked acyl groups at thesn-2position of membrane phospholipids. This activity liberates free fatty acid and lysophospholipid. In eukaryotic cells thesn-2position of membrane phospholipids is enriched with arachidonic acid and therefore the PLA2s are considered to be the first step in the regulated production of the eicosanoids. While eicosanoid production is of major importance in normal and pathological states the functions of individual PLA2s in normal and pathophysiological states is not known.


Arachidonic Acid Mesangial Cell Phorbol Myristate Acetate Phorbol Myristate Acetate Cytosolic Phospholipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.A. Dennis, The growing phospholipase A2superfamily of signal transduction enzymes, Trends Biochem.Sci., 22: 1–2 (1997).PubMedCrossRefGoogle Scholar
  2. 2.
    J.D. Clark, L.L. Lin, R.W. Kriz, C.S. Ramesha, L.A. Sultzman, A.Y. Lin, N. Milona, and J.L. Knopf, A novel arachidonic acid-selective cytosolic PLA2contains a Cat+- dependent translocation domain with homology to PKC and GAP, Cell, 65: 1043–51 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    L.L. Lin, M. Wartmann, A.Y. Lin, J.L. Knopf, A. Seth, and R.J. Davis, cPLA2 is phosphorylated and activated by MAP kinase, Cell, 72: 269–78 (1993).PubMedCrossRefGoogle Scholar
  4. 4.
    R.M. Kramer, E.F. Roberts, S.L. Um, A.G. Borsch-Haubold, S.P. Watson, M.J. Fisher, and J.A. Jakubowski, p38 mitogen-activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin-stimulated platelets. Evidence that proline-directed phosphorylation is not required for mobilization of arachidonic acid by cPLA2, J Biol Chem, 271: 27723–9 (1996).PubMedCrossRefGoogle Scholar
  5. 5.
    J.V. Bonventre, Z. Huang, M.R. Taheri, E. O’Leary, E. Li, M.A. Moskowitz, and A. Sapirstein, Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2Nature, 390: 622–5 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    N. Uozumi, K. Kume, T. Nagase, N. Nakatani, S. Ishii, F. Tashiro, Y. Komagata, K. Maki, K. Ikuta, Y. Ouchi, J. Miyazaki, and T. Shimizu, Role of cytosolic phospholipase A2in allergic response and parturition, Nature, 390: 618–22 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    J. Pfeilschifter, Mesangial cells orchestrate inflammation in the renal glomerulus, NIPS, 9: 271–6 (1994).Google Scholar
  8. 8.
    S.C. Gad, B.J. Dunn, D.W. Dobbs, C. Reilly, and R.D. Walsh, Development and validation of an altemative dermal sensitization test: the mouse ear swelling test (MEST), Toxicol Appl Pharmacol, 84: 93–114 (1986).PubMedCrossRefGoogle Scholar
  9. 9.
    R.P. Carlson, L. O’Neill-Davis, J. Chang, and A.J. Lewis, Modulation of mouse ear edema by cyclooxygenase and lipoxygenase inhibitors and other pharmacologic agents, Agents Actions, 17: 197–204 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    X.S. Chen, J.R. Sheller, E.N. Johnson, and C.D. Funk, Role of leukotrienes revealed by targeted disruption of the 5- lipoxygenase gene, Nature, 372: 179–82 (1994).PubMedCrossRefGoogle Scholar
  11. 11.
    R. Langenbach, S.G. Morham, H.F. Tiano, C.D. Loftin, B.I. Ghanayem, P.C. Chulada, J.F. Mahler, C.A. Lee, E.H. Goulding, K.D. Kluckman, and et al., Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration, Cell, 83: 483–92 (1995).PubMedCrossRefGoogle Scholar
  12. 12.
    S.G. Morham, R. Langenbach, C.D. Loftin, H.F. Tiano, N. Vouloumanos, J.C. Jennette, J.F. Mahler, K.D. Kluckman, A. Ledford, C.A. Lee, and et al., Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse, Cell, 83: 473–82 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    H. Lim, B.C. Paria, S.K. Das, J.E. Dinchuk, R. Langenbach, J.M. Trzaskos, and S.K. Dey, Multiple female reproductive failures in cyclooxygenase 2-deficient mice, Cell, 91: 197–208 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    C.R. Kennedy, Y. Zhang, S. Brandon, Y. Guan, K. Coffee, C.D. Funk, M.A. Magnuson, J.A. Oates, M.D. Breyer, and R.M. Breyer, Salt-sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor, Nat Med, 5: 217–20 (1999).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Abe, K. Kogure, H. Yamamoto, M. Imazawa, and K. Miyamoto, Mechanism of arachidonic acid liberation during ischemia in gerbil cerebral cortex, J Neurochem, 48: 503–9 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    N.G. Bazan, Jr., Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain, Biochim Biophys Acta, 218: 1–10 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    P. Klivenyi, M.F. Beal, R.J. Ferrante, O.A. Andreassen, M. Wermer, M.R. Chin, and J.V. Bonventre, Mice deficient in group IV cytosolic phospholipase A2are resistant to MPTP neurotoxicity, J Neurochem, 71: 2634–7 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Joseph V. Bonventre
    • 1
    • 3
    • 5
  • Adam Sapirstein
    • 2
    • 4
  1. 1.Departments of MedicineHarvard Medical SchoolBoston
  2. 2.Departments of Anesthesia and Critical CareHarvard Medical SchoolBoston
  3. 3.Departments of MedicalMassachusetts General HospitalBoston
  4. 4.Departments of Anesthesia ServicesMassachusetts General HospitalBoston
  5. 5.Departments of Harvard-MassachusettsInstitute of Technology Division of Health SciencesBoston

Personalised recommendations