Advertisement

Characterization of Microsomal, Glutathione Dependent Prostaglandin E Synthase

  • Per-Johan Jakobsson
  • Staffan Thorén
  • Ralf Morgenstern
  • Bengt Samuelsson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)

Abstract

Terminal prostanoid synthases constitute a group of several specific enzymes that catalyze the further metabolism of cyclooxygenase-derived prostaglandin H2. The efficient biosynthesis of prostaglandin E2 requires prostaglandin E synthase (E.C. 5.3.99.3). High prostaglandin E synthase (PGES) activity is found in the sheep and bovine vesicular gland. In this organ, both PGES and cyclooxygenase activities are localized to the microsomal membrane system, where the PGES activity is dependent on milli-molar concentrations of reduced glutathione. The activity of the enzyme rapidly deteriorated following solubilization, why any attempts to identify this protein by purification have not been successful1,2. A different method employed to try identifying the sheep microsomal PGES involved immunoprecipitation3. Two membrane associated PGES’s with molecular masses of 17.5 kDa and 180 kDa were reported. The smaller enzyme possessed a lower Km (40 1M) for PGH2than the larger protein (150.tM) and interestingly, the smaller enzyme was also localized to the same membrane system as cyclooxygenase3. None of these enzymes possessed any significant glutathione-S- transferase (GST) activity. In contrast, purification of the enzymes responsible for cytosolic PGES activity in human brain as well asAscaridia gallihave revealed their nature as cytosolic GST’s4,5. In addition to the glutathione dependent PGES’s, a glutathione independent, microsomal PGES has been characterized6which was recently purified from bovine heart7.

Keywords

Cumene Hydroperoxide Eicosatetraenoic Acid Eicosanoid Metabolism Vesicular Gland Small Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Ogino, T. Miyamoto, S. Yamamoto and O. Hayaishi, Prostaglandin endoperoxide E isomerase from bovine vesicular gland microsomes, a glutathione-requiring enzymeJ. Biol. Chem.252: 890 (1977).PubMedGoogle Scholar
  2. 2.
    P. Moonen, M. Buytenhek and D.H. Nugteren, Purification of PGH-PGE isomerase from sheep vesicular glandsMethods Enzymol.86: 84 (1982).PubMedCrossRefGoogle Scholar
  3. 3.
    Y. Tanaka, S. Ward and W. Smith, Immunochemical and kinetic evidence for two different prostaglandin H-prostaglandin E isomerases in sheep vesicular gland microsomesJ. Biol. Chem.262: 1374 (1987).PubMedGoogle Scholar
  4. 4.
    T. Ogorochi, M. Ujihara and S. Narumiya, Purification and properties of prostaglandin H-E isomerase from the cytosol of human brain: Identification as anionic forms of glutathione S-transferaseJ. Neurochem.48: 900 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    D.J. Meyer, R. Muimo, M. Thomas, D. Coates and R.E. Isaac, Purification and characterization of prostaglandin-H E-isomerase, a sigma-class glutathione S-transferase, from Ascaridia galliBiochem. J.313: 223 (1996).PubMedCentralPubMedGoogle Scholar
  6. 6.
    K. Watanabe, K. Kurihara, Y. Tokunaga and O. Hayaishi, Two types of microsomal prostaglandin E synthase: glutathione-dependent and -independent prostaglandin E synthasesBiochem. Biophys. Res. Commun.235: 148 (1997).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Watanabe, K. Kurihara and T. Suzuki, Purification and characterization of membrane-bound prostaglandin E synthase from bovine heartBiochim. Biophys. Acta1439: 406 (1999).Google Scholar
  8. 8.
    K. Polyak, Y. Xia, J.L. Zweier, K.W. Kinzler and B. Vogelstein, A model for p53-induced apoptosisNature389: 300 (1997).PubMedCrossRefGoogle Scholar
  9. 9.
    P.-J. Jakobsson, R. Morgenstern, J. Mancini, A. Ford-Hutchinson and B. Persson, Common structural features of MAPEG - A widespread superfamily of membrane associated proteins with highly divergent functions in eicosanoid and glutathione metabolismProt. Sci.8: 689 (1999).CrossRefGoogle Scholar
  10. 10.
    P. Jakobsson, R. Morgenstern, J. Mancini, A. Ford-Hutchinson and B. Persson, Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPEG), Am.J. Respir. Crit. Care Med.161: S20 (2000).PubMedCrossRefGoogle Scholar
  11. 11.
    J.R. Burgess and C.C. Reddy, Isolation and characterization of an enzyme from sheep seminal vesicles that catalyzes the glutathione-dependent reduction of prostaglandin H-2 to prostaglandin F-2-alphaBiochem. Mol. Biol. Int.41: 217 (1997).PubMedGoogle Scholar
  12. 12.
    P.J. Jakobsson, S. Thoren, R. Morgenstern and B. Samuelsson, Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug targetProc. Natl. Acad. Sci. USA96: 7220 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    J.A. Mancini, M. Abramovitz, M.E. Cox, E. Wong, S. Charleson, H. Perrier, Z. Wang, P. Prasit and P.J. Vickers, 5-Lipoxygenase-activating protein is an arachidonate binding proteinFEBS Leu.318: 277 (1993).CrossRefGoogle Scholar
  14. 14.
    P.-J. Jakobsson, J.A. Mancini and A.W. Ford-Hutchinson, Identification and characterization of a novel human microsomal glutathione S-transferase with leukotriene C4 synthase activity and significant sequence identity to 5-lipoxygenase activating protein and leukotriene C4 synthaseJ. Biol. Chem.271: 22203 (1996).PubMedCrossRefGoogle Scholar
  15. 15.
    K.A. Scoggan, P.J. Jakobsson and A.W. Ford-Hutchinson, Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymesJ. Biol. Chem.272: 10182 (1997).PubMedCrossRefGoogle Scholar
  16. 16.
    P.-J. Jakobsson, J.A. Mancini, D. Riendeau and A.W. Ford-Hutchinson, Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activitiesJ. Biol. Chem.272: 22934 (1997).PubMedCrossRefGoogle Scholar
  17. 17.
    M. Huang, M. Stolina, S. Sharma, J.T. Mao, L. Zhu, P.W. Miller, J. Wollman, H. Herschman and S.M. Dubinett, Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 productionCancer Res.58: 1208 (1998).PubMedGoogle Scholar
  18. 18.
    J.A. Mitchell, M.G. Belvisi, P. Akarasereenont, R.A. Robbins, O.J. Kwon, J. Croxtall, P.J. Barnes and J.R. Vane, Induction of cyclo-oxygenase-2 by cytokines in human pulmonary epithelial cells: regulation by dexamethasoneBr. J. Pharmacol.113: 1008 (1994).PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    M. Kelner and S. Uglik, PDGF-induces the glutathione-dependent enzyme PGH2/PGE2 isomerase in NIH3T3 and pEJ transformed fibroblastsBiochem. Biophys. Res. Commun.198: 298 (1994).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Forsberg, L. Leeb, S. Thorén, R. Morgenstern and P. Jakobsson, Human glutathione dependent prostaglandin E synthase: gene structure and regulationFEBS Leu.471: 78 (2000).Google Scholar
  21. 21.
    K. Satoh, Y. Nagano, C. Shimomura, N. Suzuki, Y. Saeki and H. Yokota, Expression of prostaglandin E synthase mRNA is induced in beta-amyloid treated rat astrocytesNeurosci. Len.283: 221 (2000).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Per-Johan Jakobsson
    • 1
  • Staffan Thorén
    • 1
  • Ralf Morgenstern
    • 2
  • Bengt Samuelsson
    • 1
  1. 1.Department of Medical Biochemistry and BiophysicsSweden
  2. 2.Institute of Environmental Medicine Karolinska InstitutetStockholmSweden

Personalised recommendations