Advertisement

Inhibition of Allergen-Induced Eosinophil Migration by Lipoxin (LX)A4and Aspirin-Triggered 15-Epi-LXA4

  • Christianne Bandeira-Melo
  • Bruno L. Diaz
  • Renato S. B. Cordeiro
  • Peter J. Jose
  • Charles N. Serhan
  • Marco A. Martins
  • Patricia T. Bozza
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)

Abstract

Eosinophils are clearly participants in allergic diseases and have effector roles in promoting the pathogenesis of these diseases. Indeed, the number of eosinophils and its secretory products are elevated in allergic inflamed tissues and have been shown to positively correlate with the severity of the disease.1-3Thus, new therapies for allergic disorders could be aided by the development of anti-eosinophilic tools. The most potent agents currently used for controlling severe eosinophilic reactions, including asthma, are the glucocorticoids4. However, the adverse effects of long term treatment with glucocorticoids have stimulated efforts to identify effective anti-inflammatory substitutes.

Keywords

Pleural Fluid Pleural Cavity Inhibit Tumor Necrosis Factor Allergic Challenge Human Eosinophil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.J. Gleich, C.R. Adolphson, and K.M. Leiferman. The biology of eosinophilic leukocyte.Annu. Rev. Med. 44:85 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    P.F. Weller. Human eosinophils.J. Allergy Clin. Immunol.100:283 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    M.E. Rothenberg. Eosinophilia.N. Engl. J. Med.28:1592 (1998).Google Scholar
  4. 4.
    P.J. Barnes. Drug therapy: Inhaled glucocorticoids for asthma.N. Engl. J. Med.332: 868 (1995).PubMedCrossRefGoogle Scholar
  5. 5.
    C.N. Serhan. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity?Prostaglandins53:107 (1997).PubMedCrossRefGoogle Scholar
  6. 6.
    C.N. Serhan, T. Takano, and J.F. Maddox. Aspirin-triggered 15-epi-lipoxin A4 and stable analogs on lipoxin A4 are potent inhibitors of acute inflammation. Receptors and pathways.In Lipoxygenases and Their Metabolites. Nigam and Pace-Asciak, editors. Plenum press, New York. p. 133 (1999).CrossRefGoogle Scholar
  7. 7.
    T.H. Lee, A.E. Crea, V. Gant, B.W. Spur, B.E. Marron, K.C. Nicolaou, E. Reardon, M. Brezinski, and C.N. Serhan. Identification of lipoxin A4 and its relationship to the sulfidopeptide leukotrienes C4, D4, and E4 in the bronchoalveolar lavage fluids obtained from patients with selected pulmonary diseases.Am. Rev. Respir. Dis.141:1453 (1990).PubMedCrossRefGoogle Scholar
  8. 8.
    C. Edenius, M. Kumlin, T. Bjork, A. Anggard, and J.A. Lindgren. Lipoxin formation in human nasal polyps and bronchial tissue.FEBS Lett.272:25 (1990).PubMedCrossRefGoogle Scholar
  9. 9.
    B.D. Levy, J.M. Drazen, and C.N. Serhan. Agonist-induced lipoxin A4 generation in vitro and in aspirin-sensitive asthmatics: detection by a novel lipoxin A4-ELISA.Adv. Exp. Med. Biol.400B:611 (1997).PubMedGoogle Scholar
  10. 10.
    C.N. Serhan, U. Hirsch, J. Palmblad, and B. Samuelsson. Formation of lipoxin A by granulocytes from eosinophilic donors.FEBS Lett.217.242 (1987).PubMedCrossRefGoogle Scholar
  11. 11.
    O. Soyombo, B.W. Spur, and T.H. Lee. Effects of lipoxin A4 on chemotaxis and degranulation of human eosinophils stimulated by platelet-activating factor and N-formyl-L-methionyl-L-leucyl-L-phenylalanine.Allergy49:230 (1994).PubMedCrossRefGoogle Scholar
  12. 12.
    C.J. Sanderson. Interleukin-5, eosinophils and disease.Blood79:3101 (1992).PubMedGoogle Scholar
  13. 13.
    A.D. Luster, and M.E. Rothenberg.Role of the monocyte chemoattractant protein and eotaxin subfamily of chemokines in allergic inflammation.J Leukoc. Biol.62:620 (1997).PubMedGoogle Scholar
  14. 14.
    P.M. Silva, M.A. Martins, M.C. Lima, A.C. Alves, B.L. Diaz, and R.S.B. Cordeiro. Pharmacological modulation of the late eosinophilia induced by antigen in actively sensitized rats.Int. Arch. Allergy Immunol.98:355 (1992).CrossRefGoogle Scholar
  15. 15.
    C.P. Pasquale, M.C. Lima, C. Bandeira-Melo, R.S. Cordeiro, P.M. Silva, and M.A. Martins. Systemic and local dexamethasone treatments prevent allergic eosinophilia in rats via distinct mechanisms.Eur. J. Pharmacol.26:67 (1999).CrossRefGoogle Scholar
  16. 16.
    C.P. Pasquale, P.M.R. e Silva, M.C. Lima, B.L.Diaz, J.P. Rihoux, B.B. Vargaftig, R.S. Cordeiro and M.A. Martins. Suppression by cetirizine of pleurisy triggered by antigen in actively sensitized rats. Eur J Pharmacol. 223:9 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Bandeira-Melo, P.T. Bozza,B.L. Diaz,R.S.B. Cordeiro,P.J. Jose, M.A. Martins and C.N. Serhan. Lipoxin (LX) A4and aspirin-triggered 15-epi-LXA4block allergen-induced eosinophil trafficking.J. Immunol.164: 2267 (2000).PubMedGoogle Scholar
  18. 18.
    C. Bandeira-Melo, M.F. Serra, B.L. Diaz, R.S.B. Cordeiro, P.M.R. Silva, H.L. Lenzi, Y.S. Bakhle, C.N. Serhan and M.A. Martins. COX-2-derived prostaglandin E2 and Lipoxin A, accelerate resolution of edema in Angistrongilus costaricensis-infected rats: relationship with concurrent eosinophilia.J. Immunol.164: 1029 (2000).PubMedGoogle Scholar
  19. 19.
    T. Takano, S. Fiore, J.F. Maddox, H.R. Brady, N.A. Petasis, and C.N. Serhan. Aspirin-triggered 15-epilipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors.J. Exp. Med.185:1693 (1997).PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    M.J. Sanz, P.D. Ponath, C.R. Mackay, W. Newman, M. Miyasaka, T. Tamatani, B.F. Flanagan, R.R. Lobb, T.J. Williams, S. Nourshargh, and P.J. Jose. Human eotaxin induces alpha 4 and beta 2 integrin-dependent eosinophil accumulation in rat skin in vivo: delayed generation of eotaxin in response to IL-4. J. Immunol. 160:3569 (1998).PubMedGoogle Scholar
  21. 21.
    M. Hachicha, M. Pouliot, N.A. Petasis, and C.N. Serhan. Lipoxin (LX)A4 and aspirin-triggered 15-epiLXA4 inhibit tumor necrosis factor lalpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis.J. Exp. Med.189:1923 (1999).PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    K. Gronert, A. Gewirtz, J.L. Madara, and C.N. Serhan. Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release. J. Exp. Med. 187:1285 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    A.T. Gewirtz, B. McCormick, A.S. Neish, N.A. Petasis, K. Gronert, C.N. Serhan, and J. L. Madara. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J. Clin. Invest. 101:1860 (1998).PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    P.E. Christie, B.W. Spur, and T.H. Lee. The effects of lipoxin A4 on airway responses in asthmatic subjects.Am. Rev. Respir. Dis.145:1281 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Christianne Bandeira-Melo
    • 1
  • Bruno L. Diaz
    • 1
  • Renato S. B. Cordeiro
    • 1
  • Peter J. Jose
    • 2
  • Charles N. Serhan
    • 3
  • Marco A. Martins
    • 4
  • Patricia T. Bozza
    • 4
  1. 1.Department of Physiology and PharmacodynamicsOswaldo Cruz InstituteRio de JaneiroBrazil
  2. 2.Leucocyte Biology, BMS DivisionImperial College School of MedicineLondonUK
  3. 3.Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s HospitalCenter for Experimental Therapeutics and Reperfusion InjuryBostonUSA
  4. 4.Departmento de Fisiologia e FarmacodinâmicaInstituto Oswaldo Cruz-FIOCRUZRio de JaneiroBrazil

Personalised recommendations