Aspirin-Triggered 15-Epi-Lipoxin A4 Biosynthesis in Rat Liver Cells

  • Esther Titos
  • Nan Chiang
  • Charles N. Serhan
  • Mario Romano
  • Joan Gaya
  • Gloria Pueyo
  • Joan Clària
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 507)


Aspirin (acetylsalicylic acid, ASA) is the lead non-steroidal anti-inflammatory drug (NSAID) and is widely used for relieving inflammation and mild to moderate pain and fever (1, 2). In addition to its primary actions, ASA also displays a wide range of beneficial effects including reduction of the incidence of coronary artery thrombosis and myocardial infarction and prevention of sporadic colon cancer (3,4). The anti-inflammatory, analgesic, antipyretic and cardiovascular protective properties are closely related to its ability to inhibit prostaglandin (PG) and thromboxane (TX) biosynthesis by acetylating the cyclooxygenase (COX) enzyme (5). However, not all the beneficial effects associated with ASA consumption can be ascribed to the inhibition of PG and TX biosynthesis, and the precise mechanism of action of ASA is at present still unsettled (6,7). In this regard, recent studies have demonstrated that in addition to block PG and TX production, ASA also triggers the generation of 15R-hydroxyeicosatetraenoic acid (15R-HETE) from arachidonic acid, which by transcellular routes is subsequently transformed to a novel series of eicosanoids identified as 15-epi-lipoxins (8-10). Since the formation of these eicosanoids is specific of ASA treatment, the term ASA-triggered lipoxins, abbreviated as AIL, was originally coined for these compounds (9,10). These novel ATL may effectively account for the beneficial effects of ASA and are indeed able to inhibit cell adhesion and proliferationin vitroand to block local inflammation by reducing both leukocyte adherence and infiltrationin vivo(9-15).


Arachidonic Acid Arachidonic Acid Metabolism Cytochrome P450 Activity Transcellular Route Coronary Artery Thrombosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flower, R.J., S. Moncada and J.R. Vane. Analgesic-antipyretics and anti-inflammatory agents: drugs employed in the treatment of gout.InThe Pharmacological Basis of Therapeutics. A.G Gillman, L.S. Goodman, T.W. Rall and F. Murad Editors. New York, NY. Macmillan. 1992.674–715.Google Scholar
  2. 2.
    Payan, D.G. and B.G. Katzung. Nonsteroidal anti-inflammatory drugs; nonopioid analgesics; drugs used in gout.InBasic & Clinical Pharmacology. B.G. Katzung editor. Norwalk, CT. Appleton & Lange. 1995. 536–559.Google Scholar
  3. 3.
    Patrono, C. Aspirin as an antiplatelet drug.New. Engl. J. Med.330: 1287–1294, 1994.PubMedCrossRefGoogle Scholar
  4. 4.
    Thun, M.J., M.M. Namboodiri and C.W. Heath. Aspirin use and reduced risk of fatal colon cancer.New. Engl. J. Med.325: 1593–1596, 1991.PubMedCrossRefGoogle Scholar
  5. 5.
    Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for the aspirin-like drugs. Nature 231: 232–235,1971.Google Scholar
  6. 6.
    Pillinger, M.H., C. Capodici, P. Rosenthal, N. Kheterpal, S. Hanft, M.R. Philips and G. Weissmann. Models of action of aspirin-like drugs: salicylates inhibit Erk activation and integrin-dependent neutrophil adhesion.Proc. Natl. Acad. Sci. USA95: 14540–14545, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Amin, A.R., P. Vyas, M. Attur, J. Leszczynska-Piziak, I.R. Patel, G. Weissmann, S.B. Abramson. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase.Proc. Natl. Acad. Sci. USA92: 7926–7930,1995.PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Lecomte, M., O. Laneuville, C. Ji, D.L. DeWitt and W.L. Smith. Acetylation of human prostaglandin endoperoxide synthase-2 (cyclooxygenase-2) by aspirin.J. Biol. Chem.269: 13207–13215, 1994.PubMedGoogle Scholar
  9. 9.
    Clària, J. and C. N. Serhan. Aspirin triggers previously unrecognized bioactive eicosanoids by human endothelial cell-leukocyte interactions.Proc. Natl. Acad. Sci. USA92: 9475–9479, 1995.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Serhan, C.N. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity?Prostaglandins53: 107–137, 1996.CrossRefGoogle Scholar
  11. 11.
    Clària, J., M. H. Lee and C.N. Serhan. Aspirin-triggered lipoxins (15-epi-LX) are generated by the human lung adenocarcinoma cell line (A549)-neutrophil interactions and are potent inhibitors of cell proliferation.Mol. Med.2: 583–596, 1996.PubMedGoogle Scholar
  12. 12.
    Gronert, K., A. Gewirzt, J.L. Madara and C.N. Serhan. Identification of a human enterocyte lipoxin A, receptor that is regulated by interleukin (IL)-13 and interferon ‘yand inhibits tumor necrosis factor a-induced IL-8 release.J. Exp. Med.187: 1285–1294, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Scalia, R., J. Gefen, N.A. Petasis, C.N. Serhan and A.M. Lefer. Lipoxin A4 stable analogs inhibit leukocyte rolling and adherence in the rat mesenteric microvasculature: role of P-selectin.Proc. Natl. Acad. Sci. USA94: 9967–72,1997.PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Takano, T., C.B. Clish, K. Gronert, N.A. Petasis and C.N. Serhan. Neutrophil-mediated changes in vascular permeability are inhibited by topical application of aspirin-triggered 15-epi-lipoxin A4 and novel lipoxin B4stable analogues.J. Clin. Invest.101: 819–826, 1998.PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Takano, T., S. Fiore, J.F. Maddox, H.R. Brady, N.A. Petasis and C.N. Serhan. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA, stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors.J. Exp. Med.185: 1693–704,1997.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Bochner, F., D.B. Williams, P.M. Moms, D.M. Siebert and J.V. Lloyd. Pharmacokinetics of low-dose oral modified release, soluble and intravenous aspirin in man and effects on platelet functions.Eur. J. Clin. Pharmacol.35: 287–294, 1988.PubMedCrossRefGoogle Scholar
  17. 17.
    Ali, B. and S. Kaur. Mammalian tissue acetylsalicylic acid esterase(s). Identification, distribution and discrimination from other esterases.J. Pharm. Exp. Ther.226: 589–594, 1983.Google Scholar
  18. 18.
    Kim, D., H.Y.S. Yang and W.B. Jakoby. Aspirin hydrolyzing esterases fom rat liver cytosol.Biochem.Pharmacol. 40: 481–487, 1990.Google Scholar
  19. 19.
    Livio, M., A. Benigni, C. Zoja, R. Begnis, C. Morelli, M. Rossini, S.Garattini and G. Remuzzi. Differential inhibition by aspirin of platelet thromboxane and renal prostaglandin in the rat.J. Pharm. Exp. Ther.248: 334–341,1989.Google Scholar
  20. 20.
    Berry, M.N. and D.S. Friend. High yield preparation of isolated rat liver parenchymal cells. A biochemical and fine study.J. Cell Biol.43: 506–520, 1969.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Titos, E., N. Chiang, C.N. Serhan, M. Romano, G. Pueyo, J. Clària. Hepatocytes are a rich source of novel aspirin-triggered 15-epi-lipoxin A4 (ATL). Am.J. Physiol. (Cell Physiol.)277:C870–877, 1999Google Scholar
  22. 22.
    Feng, L., W. Sun, Y. Xia, W.W. Tang, P. Chanmugam, E. Soyoola, C.B. Wilson and D. Hwang. Cloning two isoforms of rat cyclooxygenase: differential regulation of their expression.Arch. Biochem. Biophys.307: 361–368, 1993.PubMedCrossRefGoogle Scholar
  23. 23.
    Balcarek J.M., T.W. Theisen, M.N. Cook, A. Varrichio, S-M. Hwang, M.W. Strohsacker, S.T. Crooke. Isolation and characterization of a cDNA clone encoding rat 5-lipoxygenase.J. Biol. Chem.263:13937–13941, 1988.PubMedGoogle Scholar
  24. 24.
    Chiang, N., T. Takano, C.B. Clish, N.A. Petasis, H-H Tai and C.N. Serhan. Aspirin-triggered 15-epi-lipoxin A4 (ATL) generation by human leukocytes and murine peritonitis exudates: development of a specific 15-epiLXA4ELISA.J. Pharm. Exp. Ther.287: 779–790, 1998.Google Scholar
  25. 25.
    Ciolino, H.P., P.J. Daschner and G. Chao Yeh. Resveratrol inhibits transcription of CYP1A1 in vitro by preventing activation of the aryl hydrocarbon receptor.Cancer Res.28: 5707–5712, 1998.Google Scholar
  26. 26.
    Bioulac-Sage, P., B. Le Bail and C. Balabaud. Structure of the liver. Liver and biliary tract histology. In Oxford textbook of clinical hepatology. McIntyre M., J-P. Benhamou, J. Bircher, M. Rizzeto and J. Rodés editors. Oxford/UK. Oxford University Press.1999. 12–20.Google Scholar
  27. 27.
    Bylund, J., T. Kunz, K. Valmsen and E.H. Oliw. Cytochromes P450 with bisallylic hydroxylation activity on arachidonic and linoleic acids studied with human recombinant enzymes and with human and rat liver microsomes.J. Pharm. Exp. Ther.284: 51–60, 1998.Google Scholar
  28. 28.
    Zeldin, D.C., C.R. Moomaw, N. Jesse, K.B. Tomer, J. Beetham, B.D. Hammock, S. Wu. Biochemical characterization of the human liver cytochrome P450 arachidonic acid epoxygenase pathway.Arch. Biochem. Biophys.330: 87–96, 1996.PubMedCrossRefGoogle Scholar
  29. 29.
    Rifkind, A.B., C. Lee, T.K.H. Chang and D.J. Waxman. Arachidonic acid metabolism by human cytochrome P450s 2C8, 2C9, 2E1 and 1A2: regioselective oxygenation and evidence for a role for CYP2C enzymes in arachidonic acid epoxygenation in human liver microsomes.Arch. Biochem. Biophys.320: 380–389, 1995.PubMedCrossRefGoogle Scholar
  30. 30.
    Damme, B., D. Darmer and D. Pankow. Induction of hepatic cytochrome P4502E1 in rats by acetylsalicylic acid or sodium salicylate.Toxicology106: 99–103, 1996.PubMedCrossRefGoogle Scholar
  31. 31.
    Kundu, R.K., J.H. Tonsgard and G.S. Getz. Induction of omega-oxidation of monocarboxylic acids in rats by acetylsalicylic acid.J. Clin. Invest.88: 1865–1872, 1991.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Capdevila, J., P. Yadagiri, S. Manna and J.R. Falck. Absolute configuration of the hydroxyeicosatetraenoic acids (HETEs) formed during catalytic oxygenation of arachidonic acid by microsomal cytochrome P450.Biochem. Biophys. Res. Commun.141:1007–1011, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Oliw, E.H. Bis-allylic hydroxylation of linoleic acid and arachidonic acid by human hepatic monooxygenases.Biochim. Biophys. Acta1166: 258–263, 1993.PubMedCrossRefGoogle Scholar
  34. 34.
    Murray, M. and G.F. Reidy. Selectivity in the inhibition of mammalian cytochromes P-450 by chemical agents.Pharmacol. Rev.42: 85–101, 1990.PubMedGoogle Scholar
  35. 35.
    Marcus, A.J. Transcellular metabolism of eicosanoids.Prog. Hemost. Thromb.8: 127–142, 1986.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Esther Titos
    • 1
  • Nan Chiang
    • 2
  • Charles N. Serhan
    • 2
  • Mario Romano
    • 3
  • Joan Gaya
    • 1
  • Gloria Pueyo
    • 4
  • Joan Clària
    • 1
  1. 1.Hospital Clínic-Institut d’Investigacions BiomèdiquesAugust Pi i Sunyer (IDIBAPS)BarcelonaSpain
  2. 2.Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Istituto di Patologia Medica e Medicina MediterraneaUniversity of MessinaItaly
  4. 4.Química Farmacéutica Bayer S.ABarcelonaSpain

Personalised recommendations